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Abstract Let g be a complex, semisimple Lie algebra. Drinfeld showed that the
quantum loop algebra Uh̄(Lg) of g degenerates to the Yangian Yh̄(g). We strengthen
this result by constructing an explicit algebra homomorphism � from Uh̄(Lg) to the
completion of Yh̄(g) with respect to its grading. We show moreover that � becomes
an isomorphism when Uh̄(Lg) is completed with respect to its evaluation ideal. We
construct a similar homomorphism for g = gln and show that it intertwines the actions
of Uh̄(Lgln) and Yh̄(gln) on the equivariant K -theory and cohomology of the variety
of n-step flags in C

d constructed by Ginzburg–Vasserot.
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1 Introduction

1.1

The present paper is motivated by and lays the groundwork for a proof of the trigono-
metric monodromy conjecture formulated by the second author in [32]. Let g be a com-
plex, semisimple Lie algebra, G the corresponding connected and simply-connected
Lie group, H ⊂ G a maximal torus and W the corresponding Weyl group. In [32]
a flat, W -equivariant connection ̂∇C was constructed on H which has logarithmic
singularities on the root subtori of H and values in any finite-dimensional represen-
tation of the Yangian Yh̄(g). By analogy with the description of the monodromy of
the rational Casimir connection of g obtained in [30,31], it was conjectured in [32]
that the monodromy of the trigonometric Casimir connection ̂∇C is described by the
action of the affine braid group of g arising from the quantum Weyl group operators
of the quantum loop algebra Uh̄(Lg). This raises in particular the problem of relating
finite-dimensional representations of Yh̄(g) and Uh̄(Lg).

1.2

Since their construction by Drinfeld [9,10], these affine quantum groups have been
extensively studied from several perspectives (see, e.g., [5, chap. 12], [2] and references
therein) and are widely believed to share the same finite-dimensional representation
theory. This belief is corroborated in part by the following facts

(1) The quantum loop algebra Uh̄(Lg) degenerates to the Yangian Yh̄(g). Specifically,
if Uh̄(Lg) is filtered by the powers of the evaluation ideal at z = 1, its associated
graded is isomorphic to Yh̄(g) [10,17].

(2) Finite-dimensional simple modules over Uh̄(Lg) are parametrised by I-tuples
of (Drinfeld) polynomials {Pi (u)}i∈I satisfying Pi (0) = 1, where I is the set
of vertices of the Dynkin diagram of g [4]. Similarly, finite-dimensional simple
modules over Yh̄(g) are classified by I-tuples of monic polynomials [3,11,28,29].

(3) If g is simply laced, there exists, for every w ∈ N
I, a Steinberg variety Z(w)

endowed with an action of GL(w) × C
× (here GL(w) = ∏

i∈I GLwi ), and
algebra homomorphisms

�U : Uh̄(Lg)→ K GL(w)×C×(Z(w))

�Y : Yh̄(g)→ H GL(w)×C×(Z(w))
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The variety Z(w) and the homomorphism �U were constructed by Nakajima
[26], while �Y was constructed by Varagnolo [33].

1.3

The above results go some way towards relating the categories of finite-dimensional
representations of Uh̄(Lg) and Yh̄(g). For example, exponentiating the roots of
Drinfeld polynomials yields, via (2), a surjective map exp∗ between the set of iso-
morphism classes of irreducible finite-dimensional modules of Yh̄(g) and those of
Uh̄(Lg)-modules. If g is simply laced, the geometric realisations (3) imply further that
exp∗ preserves the dimensions of these representations [33].

Despite these results however, and to the best of our knowledge, no natural relation
between the categories of finite-dimensional representations of Uh̄(Lg) and Yh̄(g) is
known. Part of the difficulty in exploiting, say, the geometric realisations to pursue this
question lies in the fact that the homomorphisms�U , �Y are neither injective nor sur-
jective [26]. Moreover, although these realisations yield all irreducible representations,
the categories Repfd(Uh̄(Lg)) and Repfd(Yh̄(g)) are not semisimple.

1.4

The aim of the present paper is to clarify the relation between Uh̄(Lg) and Yh̄(g). We
do so by constructing an explicit algebra homomorphism

� : Uh̄(Lg) −→ Ŷh̄(g)

where Ŷh̄(g) is the completion of Yh̄(g) with respect to its N-grading and show that
it induces an isomorphism of completed algebras. We also show that� exponentiates
the roots of Drinfeld polynomials, though we defer the study of the corresponding
pull-back functor

F = �∗ : Repfd(Yh̄(g))→ Repfd(Uh̄(Lg))

to the sequel of this paper [13].
To state out results more precisely, recall that Uh̄(Lg) and Yh̄(g) are deformations

of the loop and current algebras U (g[z, z−1]) and U (g[s]) respectively. Denote by

Uh̄(Lh),Uh̄(Lb±) ⊂ Uh̄(Lg) and Yh̄(h), Yh̄(b±) ⊂ Yh̄(g)

the subalgebras deforming U (h[z, z−1]), U (b±[z, z−1]) and U (h[s]), U (b±[s])
respectively, where h ⊂ g is the Lie algebra of H and b± ⊂ g are the opposite
Borel subalgebras corresponding to a choice {αi }i∈I of simple roots of g. For any
i ∈ I, let sli2 ⊂ g be the corresponding 3-dimensional subalgebra and denote by

Uh̄(Lsli2) ⊂ Uh̄(Lg) and Yh̄(sl
i
2) ⊂ Yh̄(g)
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the subalgebras which deform U (sli2[z, z−1]) and U (sli2[s]) respectively. Then, the
main result of this paper is the following

Theorem There exists an explicit algebra homomorphism� : Uh̄(Lg)→ Ŷh̄(g)with
the following properties

(1) � is defined over Q[[h̄]].
(2) � induces an isomorphism Ûh̄(Lg) → Ŷh̄(g), where Ûh̄(Lg) is the completion

of Uh̄(Lg) with respect to the ideal of z = 1.
(3) � induces Drinfeld’s degeneration of Uh̄(Lg) to Yh̄(g).
(4) � restricts to a homomorphism Uh̄(Lh)→ Ŷh̄(h) which induces the exponenti-

ation of roots on Drinfeld polynomials.
(5) � restricts to a homomorphism Uh̄(Lb±)→ Ŷh̄(b±).
(6) � restricts to a homomorphism Uh̄(Lsli2)→ ̂Yh̄(sl

i
2) for any i ∈ I.

It is interesting to note that Theorem 1.4 stands in stark contrast with the analogous
finite-dimensional situation. Indeed, if g � sl2, no explicit isomorphisms are known
between the quantum group Uh̄g and the undeformed enveloping algebra Ug[[h̄]] [5,
§6.4]. Moreover, if g � sl2, no algebra isomorphism Uh̄g → Ug[[h̄]] maps Uh̄sli2 to
Usli2[[h̄]] for every i ∈ I [31, Prop. 3.2].

1.5

The homomorphism� has the following form. Let {Ei,k, Fi,k, Hi,k}i∈I,k∈Z be the loop
generators of Uh̄(Lg) and {x±i,m, ξi,m}i∈I,m∈N those of Yh̄(g) (see [11] and Sect. 2 for
definitions). Then,

�(Hi,0) = d−1
i ti,0

�(Hi,r ) = h̄

qi − q−1
i

∑

m≥0

ti,m
rm

m!
�(Ei,k) = ekσ+i

∑

m≥0

g+i,m x+i,m

�(Fi,k) = ekσ−i
∑

m≥0

g−i,m x−i,m

In the formulae above, r ∈ Z
∗, k ∈ Z, q = eh̄/2 and qi = qdi , where the di are the

symmetrising integers for the Cartan matrix of g. The {ti,m}i∈I,m∈N are an alternative
set of generators of the commutative subalgebra Yh̄(h) ⊂ Yh̄(g) generated by the
elements {ξi,m}i∈I,m∈N. They are defined in [22] by equating the generating functions

h̄
∑

m≥0

ti,mu−m−1 = log(1+ h̄
∑

m≥0

ξi,mu−m−1)
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The elements {g±i,m}i∈I,m∈N lie in the completion of Yh̄(h) and are constructed as
follows. Consider the formal power series

G(v) = log

(

v

ev/2 − e−v/2

)

∈ vQ[[v]]

and define γi (v) ∈̂Y 0[[v]] by

γi (v) = h̄
∑

r≥0

ti,r
r !

(

− d

dv

)r+1

G(v)

Then,

∑

m≥0

g±i,mv
m =

(

h̄

qi − q−1
i

)1/2

exp

(

γi (v)

2

)

(1.1)

Finally, σ±i are the homomorphisms of the subalgebras Yh̄(b±) ⊂ Yh̄(g) generated
by {ξ j,r , x±j,r } j∈I,r∈N, which fix the ξ j,r and act on the remaining generators as the

shifts x±j,r → x±j,r+δi j
.

Note that the formulae connecting the generators {Hi,k} of Uh̄(Lg) and {ti,m} of
Yh̄(h) essentially coincide with those connecting the generators of h[z, z−1] and h[s].

1.6

The above formulae apply equally well when g is a symmetrisable Kac–Moody alge-
bra. Our proof of Theorem 1.4 shows that they define a homomorphism from the
quantum affinization Ûh̄g of the quantum group Uh̄g [20,26], to the completion of the
Yangian Yh̄(g), provided the following holds

(1) the entries of the Cartan matrix of g satisfy ai j a ji ≤ 3 for i 	= j ∈ I.
(2) the PBW theorem holds for Yh̄(g).

The first assumption is equivalent to requiring that all rank 2 subalgebras of g be
finite-dimensional and is needed in our proof of the q-Serre relations. The second is
required for the construction of certain straightening homomorphisms on Yh̄(g)which
are needed in the proof of Theorem 1.4. We note that, for the Yangians associated with
affine Kac–Moody algebras, the PBW theorem was proved by Guay in type An , for
n ≥ 4 [16] and, more recently, by Guay–Nakajima for all simply laced cases [18].
In particular, the above formulae define a homomorphism from the quantum toroïdal
algebra U tor

h̄ (g) associated with a simply laced, simple Lie algebra g � sl2, to the
completion of the affine Yangian Yh̄ ĝ.
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1.7

We also construct in this paper a homomorphism similar to the one described in
Sect. 1.5 for g = gln , by relying on the geometric realisation of Uh̄(Lgln) obtained
by Ginzburg and Vasserot [15,34]. More precisely, fix integers 1 ≤ n ≤ d, and let

F = {0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = C
d}

be the variety of n-step flags in C
d . The cotangent bundle T ∗F may be realised as

T ∗F = {(V•, x) ∈ F × End(Cd)| x(Vi ) ⊂ Vi−1}

and therefore admits a morphism T ∗F → N via the second projection, where N =
{x ∈ End(Cd)| xn = 0} is the cone of n-step nilpotent endomorphisms. Define the
Steinberg variety Z = T ∗F ×N T ∗F . The group GLd ×C

× acts on T ∗F and Z and
there are surjective algebra homomorphisms

�U : Uh̄(Lgln)→ K GLd×C×(Z)

�Y : Yh̄(gln)→ H GLd×C×(Z)

see [15,34] for the definition of �U .
To understand these more explicitly, one can use the convolution actions of

K GLd×C×(Z) on K GLd×C×(T ∗F) and of H GLd×C×(Z) on HGLd×C×(T
∗F), which

are faithful. By using the equivariant Chern character, we construct an algebra homo-
morphism

� : Uh̄(Lgln)→ Ŷh̄(gln)

which intertwines these two actions.

1.8

In the sequel to this paper [13], we shall prove that, for g semisimple, a modification
of the pull-back functor�∗ converges for numerical values of h̄ and defines a functor

Repfd(Ya(g))→ Repfd(Uε(Lg))

where Ya(g) is the specialisation of Yh̄(g) at h̄ = a ∈ C\R and ε = exp(π ia) and
defines an equivalence of an explicit subcategory of Repfd(Yag) with Repfd(Uε(Lg)).

1.9

It is worth pointing out that most of our results relating Uh̄(Lg) and Yh̄(g) have
analogues for the affine and degenerate affine Hecke algebras H and H′ associated with
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an affine Weyl group W [24] and were in fact inspired by these and their further study
in [6]. Indeed, in [24], Lusztig constructs an explicit isomorphism between appropriate
completions of H and H′. In this context, the isomorphism can be understood in terms
of, and in fact obtained from, the geometric realisations

� : H ∼−→ K G×C×(Z)

�′ : H′ ∼−→ H G×C×(Z)

where Z is the Steinberg variety corresponding to W [7,14].

1.10 Outline of the paper

In Sect. 2, we review the definition of the quantum loop algebra Uh̄(Lg) and Yangian
Yh̄(g) of a semisimple Lie algebra g. We also introduce shift homomorphisms of the
subalgebras Yh̄(b±), and straightening homomorphisms of the subalgebra Yh̄(h).

In Sect. 3, we consider assignments mapping the generators of Uh̄(Lg) to Ŷh̄(g).
These have the form described in Sect. 1.5, where the elements g±i,m ∈ Ŷh̄(h) are,
however, not necessarily given by formula (1.1). Our main result, Theorem 3.4, gives
necessary and sufficient conditions for these elements to give rise to an algebra
homomorphism. We call such homomorphisms of geometric type since, for g simply
laced, they are related to the Chern character in the geometric realisation described in
Sect. 1.2.

The proof that the elements given by (1.1) satisfy the conditions of Theorem 3.4, and
therefore give rise to an algebra homomorphism�, is given in Sect. 4 (Theorem 4.7).
We also prove that the action of � on Drinfeld polynomials exponentiates their roots
(Corollary 4.5).

In Sect. 5, we prove the essential uniqueness of homomorphisms of geometric type
by showing that any two differ by conjugation by an element of the torus H and an
invertible element of Ŷh̄(h) (Theorem 5.11).

In Sect. 6, we show that any homomorphism of geometric type � induces an
isomorphism Ûh̄(Lg)→ Ŷh̄(g), where Ûh̄(Lg) is the completion with respect to the
evaluation ideal at z = 1 (Theorem 6.2). We show moreover that the associated graded
map coincides with Drinfeld’s degeneration of Uh̄(Lg) to Yh̄(g) (Proposition 6.5).

Section 7 contains similar results for g = gln . In addition to constructing an explicit
homomorphism � : Uh̄(Lgln) → Ŷh̄(gln) (Theorem 7.6), we review the geometric
realisations of these algebras and show that � intertwines them (Theorem 7.19).

An appendix (Sect. 8) contains a proof of the Serre relations which is required to
complete the proof of Theorem 3.4.

2 Quantum loop algebras and Yangians

2.1

Let g be a complex, semisimple Lie algebra and (·, ·) a non-degenerate, invariant
bilinear form on g. Let h ⊂ g be a Cartan subalgebra of g, {αi }i∈I ⊂ h∗ a basis
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of simple roots of g relative to h and ai j = 2(αi , α j )/(αi , αi ) the entries of the
corresponding Cartan matrix A. Set di = (αi , αi )/2, so that di ai j = d j a ji for any
i, j ∈ I. Let ν : h → h∗ be the isomorphism determined by the inner product (·, ·) and
set hi = ν−1(αi )/di . Choose root vectors ei ∈ gαi , fi ∈ g−αi such that [ei , fi ] = hi .
Recall that g is presented on generators {ei , fi , hi } subject to the relations

[

hi , h j
] = 0

[

hi , e j
] = ai j e j

[

hi , f j
] = −ai j f j

[

ei , f j
] = δi j hi

for any i, j ∈ I and, for any i 	= j ∈ I

ad(ei )
1−ai j e j = 0

ad( fi )
1−ai j f j = 0

A closely related, but slightly less standard presentation may be obtained by setting
ti = ν−1(αi ) = di hi and choosing, for any i ∈ I, root vectors x±i ∈ g±αi such that
[x+i , x−i ] = ti . Then g is presented on {x±i , ti }i∈I subject to the relations

[

ti , t j
] = 0

[

ti , x±j
]

= ±di ai j x±j
[

x+i , x−j
]

= δi j ti

ad(x±i )
1−ai j x±j = 0

2.2

Throughout this paper, q and h̄ are formal variables related by q2 = eh̄ . For any i ∈ I,
we set qi = qdi = eh̄di /2. We use the standard notation for Gaussian integers

[n]q = qn−q−n

q−q−1

[n]q ! = [n]q [n − 1]q . . . [1]q
[

n
k

]

q
= [n]q !

[k]q ![n−k]q !

2.3 The quantum loop algebra [11]

Let Uh̄(Lg) be the unital, associative algebra over C[[h̄]] topologically generated by
elements {Ei,k, Fi,k, Hi,k}i∈I,k∈Z subject to the following relations
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(QL1) For i, j ∈ I and r, s ∈ Z

[Hi,r , Hj,s] = 0

(QL2) For any i, j ∈ I and k ∈ Z,

[Hi,0, E j,k] = ai j E j,k [Hi,0, Fj,k] = −ai j Fj,k

(QL3) For any i, j ∈ I and r ∈ Z
×,

[Hi,r , E j,k] = [rai j ]qi

r
E j,r+k [Hi,r , Fj,k] = −[rai j ]qi

r
Fj,r+k

(QL4) For i, j ∈ I and k, l ∈ Z

Ei,k+1 E j,l − q
ai j
i E j,l Ei,k+1 = q

ai j
i Ei,k E j,l+1 − E j,l+1 Ei,k

Fi,k+1 Fj,l − q
−ai j
i Fj,l Fi,k+1 = q

−ai j
i Fi,k Fj,l+1 − Fj,l+1 Fi,k

(QL5) For i, j ∈ I and k, l ∈ Z

[Ei,k, Fj,l ] = δi j
ψi,k+l − φi,k+l

qi − q−1
i

(QL6) Let i 	= j ∈ I and set m = 1− ai j . For every k1, . . . , km ∈ Z and l ∈ Z

∑

π∈Sm

m
∑

s=0

(−1)s
[

m
s

]

qi

Ei,kπ(1) . . . Ei,kπ(s) E j,l Ei,kπ(s+1) . . . Ei,kπ(m) = 0

∑

π∈Sm

m
∑

s=0

(−1)s
[

m
s

]

qi

Fi,kπ(1) . . . Fi,kπ(s) Fj,l Fi,kπ(s+1) . . . Fi,kπ(m) = 0

where the elements ψi,r , φi,r are defined by

ψi (z) =
∑

r≥0

ψi,r z−r = exp

(

h̄di

2
Hi,0

)

exp

⎛

⎝ (qi − q−1
i )

∑

s≥1

Hi,s z−s

⎞

⎠

φi (z) =
∑

r≥0

φi,−r zr = exp

(

− h̄di

2
Hi,0

)

exp

⎛

⎝−(qi − q−1
i )

∑

s≥1

Hi,−s zs

⎞

⎠

with ψi,−k = φi,k = 0 for every k ≥ 1.
We shall denote by U 0 ⊂ Uh̄(Lg) the commutative subalgebra generated by the

elements {Hi,r }i∈I,r∈Z.
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2.4 The Yangian [11]

Let Yh̄(g) be the unital, associative C[h̄]-algebra generated by elements
{x±i,r , ξi,r }i∈I,r∈N, subject to the following relations

(Y1) For any i, j ∈ I and r, s ∈ N

[ξi,r , ξ j,s] = 0

(Y2) For i, j ∈ I and s ∈ N

[ξi,0, x±j,s] = ±di ai j x±j,s

(Y3) For i, j ∈ I and r, s ∈ N

[ξi,r+1, x±j,s] − [ξi,r , x±j,s+1] = ±di ai j h̄

2
(ξi,r x±j,s + x±j,sξi,r )

(Y4) For i, j ∈ I and r, s ∈ N

[x±i,r+1, x±j,s] − [x±i,r , x±j,s+1] = ±di ai j h̄

2
(x±i,r x±j,s + x±j,s x±i,r )

(Y5) For i, j ∈ I and r, s ∈ N

[x+i,r , x−j,s] = δi jξi,r+s

(Y6) Let i 	= j ∈ I and set m = 1− ai j . For any r1, . . . , rm ∈ N and s ∈ N

∑

π∈Sm

[

x±i,rπ(1) ,
[

x±i,rπ(2) , . . . ,
[

x±i,rπ(m) , x±j,s
]

· · ·
]]

= 0

Yh̄(g) is an N-graded algebra by deg(ξi,r ) = deg(x±i,r ) = r and deg(h̄) = 1.

2.5 PBW theorem for Yh̄(g)

For any positive root β of g, choose a sequence of simple roots αi1, . . . , αik such that
β = αi1 + · · · + αik and

[x±i1
, [x±i2

, . . . , [x±ik−1
, x±ik

] · · · ]] ∈ g±β

are non-zero vectors. For any r ∈ N, define x±β,r ∈ Yh̄(g) by choosing a partition
r = r1 + · · · + rk of length k and setting

x±β,r = [x±i1,r1
, [x±i2,r2

, . . . , [x±ik−1,rk−1
, x±ik ,rk

] · · · ]]
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Theorem ([23]). Fix a total order on the set G = {ξi,r , x±β,r }i∈I,r∈N,β∈�+ . Then, the
ordered monomials in the elements of G form a basis of Yh̄(g).

Let Y 0,Y± ⊂ Yh̄(g) be the subalgebras generated by the elements {ξi,r }i∈I,r∈N

(resp. {x±i,r }i∈I,r∈N) and Y≥0,Y≤0 ⊂ Yh̄(g) the subalgebras generated by Y 0,Y+ and

Y 0,Y− respectively. The following is a direct consequence of Theorem 2.5.

Corollary (1) Y 0 is a polynomial algebra in the generators {ξi,r }i∈I,r∈N.
(2) Y± is the algebra generated by elements {x±i,r }i∈I,r∈N subject to the relations (Y4)

and (Y6).
(3) Y≥0 (resp. Y≤0) is the algebra generated by elements {ξi,r , x±i,r }i∈I,r∈N subject to

the relations (Y1)–(Y4) and (Y6).
(4) Multiplication induces an isomorphism of vector spaces

Y− ⊗ Y 0 ⊗ Y+ → Yh̄(g)

2.6 The shift operators σ±i

Fix i ∈ I. By Corollary 2.5 (3), the assignment

x±j,r → x±j,r+δi j
ξ j,r → ξ j,r

extends to an algebra homomorphism Y≥0 → Y≥0 (resp. Y≤0 → Y≤0) which we
shall denote by σ±i .

2.7 The relations (Y2)–(Y3)

We rewrite below the defining relations (Y2)–(Y3) of Yh̄(g) in terms of the shift
operators σ±j and the generating series

ξi (u) = 1+ h̄
∑

r≥0

ξi,r u−r−1 ∈ Yh̄(g)[[u−1]] (2.1)

Lemma The relations (Y2)–(Y3) are equivalent to

[ξi (u), x±j,s] =
±h̄di ai j

u − σ±j ± h̄di ai j/2
ξi (u)x

±
j,s

where the rational function on the right-hand side is expanded in powers of u−1.

Proof Set a = di ai j/2. Multiplying (Y3) by h̄u−r−1 and summing over r ≥ 0 yields

u[ξi (u)− 1− h̄u−1ξi,0, x±j,s] − [ξi (u)− 1, x±j,s+1] = ±h̄a{x±j,s, ξi (u)− 1}
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where {x, ξ} = xξ + ξ x . Using (Y2) and {x, ξ} = [x, ξ ] + 2ξ x , yields

(u − σ±j ± h̄a)[ξi (u), x±j,s] = ±2h̄aξi (u)x
±
j,s (2.2)

as claimed. Conversely, taking the coefficients of u0 and u−r−1 in (2.2) yields (Y2)
and (Y3) respectively. ��

2.8 The relations (Y4) and (Y6)

We shall use the following notation

• for an operator T ∈ End(V ), T(i) ∈ End(V⊗m) is defined as

T(i) = 1⊗i−1 ⊗ T ⊗ 1⊗m−i

• for an algebra A, ad(m) : A⊗m → End(A) is defined as

ad(m) (a1 ⊗ · · · ⊗ am) = ad(a1) ◦ · · · ◦ ad(am)

Proposition (1) The relation (Y4) for i 	= j is equivalent to the requirement that the
following holds for any A(v1, v2) ∈ C[[v1, v2]]

A(σ±i , σ
±
j )(σ

±
i − σ±j ∓ ah̄)x±i,0x±j,0 = A(σ±i , σ

±
j )(σ

±
i − σ±j ± ah̄)x±j,0x±i,0

where a = di ai j/2.
(2) The relation (Y4) for i = j is equivalent to the requirement that the following

holds for any B(v1, v2) ∈ C[[v1, v2]] such that B(v1, v2) = B(v2, v1)

μ
(

B(σ±i,(1), σ
±
i,(2))(σ

±
i,(1) − σ±i,(2) ∓ di h̄)x

±
i,0 ⊗ x±i,0

)

= 0 (2.3)

where μ : Yh̄(g)
⊗2 → Yh̄(g) is the multiplication.

(3) The relation (Y6) is equivalent to the requirement that the following holds for any
i 	= j and A ∈ C[v1, . . . , vm]Sm with m = 1− ai j

ad(m)
(

A(σ±i,(1), . . . , σ
±
i,(m))

(

x±i,0
)⊗m

)

x±j,l = 0

Proof (1) The relation (Y4)

[x±i,r+1, x±j,s] − [x±i,r , x±j,s+1] = ±ah̄(x±i,r x±j,s + x±j,s x±i,r )

may be rewritten as

σ±r
i σ±s

j

(

σ±i − σ±j ∓ ah̄
)

x±i,0x±j,0 = σ±r
i σ±s

j

(

σ±i − σ±j ± ah̄
)

x±j,0x±i,0
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(2) If i = j , a = di and the above may be written as

μ
(

σ±r
i,(1)σ

±s
i,(2)

(

σ±i,(1) − σ±i,(2) ∓ di h̄
)

x±i,0 ⊗ x±i,0
)

= μ
(

σ±s
i,(1)σ

±r
i,(2)

(

σ±i,(2) − σ±i,(1) ± di h̄
)

x±i,0 ⊗ x±i,0
)

which is equivalent to

μ
((

σ±r
i,(1)σ

±s
i,(2) + σ±s

i,(1)σ
±r
i,(2)

) (

σ±i,(1) − σ±i,(2) ∓ di h̄
)

x±i,0 ⊗ x±i,0
)

= 0

(3) is just the reformulation of (Y6).
��

Corollary If (2.3) holds for some B ∈ C[[v1, v2]], then B(v1, v2) = B(v2, v1).

Proof By (2) of Proposition 2.8, we may assume that B(v1, v2) = −B(v2, v1) and
therefore that B = (v1 − v2)B where B is symmetric in v1 ↔ v2. Using the grading
on Yh̄(g), we may further assume that B is proportional to vr

1v
s
2 + vs

1v
r
2 for some

r ≥ s ∈ N. An application of (Y4) then yields

μ
(

(σ±i,(1) − σ±i,(2))(σ±r
i,(1)σ

±s
i,(2) + σ±s

i,(1)σ
±r
i,(2))(σ

±
i,(1) − σ±i,(2) ∓ di h̄)x±i,0 ⊗ x±i,0

)

= 2
(

(x±i,r+2x±i,s − x±i,r+1x±i,s+1 ∓ di h̄x±i,r+1x±i,s )− (x±i,r+1x±i,s+1 − x±i,r x±i,s+2 ∓ di h̄x±i,r x±i,s+1)
)

If r ≥ s + 2, the above is not zero by the PBW Theorem 2.5 and B = 0. If r = s + 1,
a further application of (Y4) shows that the second of the above two parenthesized
summands is zero and again B = 0 by Theorem 2.5. Finally, if r = s, (Y4) implies
that the two parenthesized summands are opposites of each other and again B = 0. ��

2.9 An alternative system of generators for Y 0

The following generators of Y 0 were introduced in [22]. For any i ∈ I, define the
formal power series

ti (u) = h̄
∑

r≥0

ti,r u−r−1 ∈ Y 0[[u−1]]

by

ti (u) = log(ξi (u)) = log

⎛

⎝1+ h̄
∑

r≥0

ξi,r u−r−1

⎞

⎠ (2.4)

Since (2.4) can be inverted, {ti,r }i∈I,r∈N is another system of generators of Y 0. These
are homogeneous, with deg(ti,r ) = r , since ζ · ξi (u) = ξi (ζ

−1u), where · is the action
of ζ ∈ C

∗ on Yh̄(g) given by the grading. Moreover, ti,0 = ξi,0 and ti,r = ξi,r mod h̄
for any r ≥ 1 since
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ti (u) = h̄
∑

r≥0

ξi,r u−r−1 mod h̄2

To compute the commutation relations between ti,r and x±j,s , we introduce the
following formal power series (inverse Borel transform of ti (u))

Bi (v) = B(ti (u)) = h̄
∑

r≥0

ti,r
vr

r ! ∈ Y 0[[v]] (2.5)

Lemma For any i, j ∈ I we have

[

Bi (v), x±j,s
]

= ±q
ai jv

i − q
−ai jv

i

v
eσ

±
j v x±j,s (2.6)

Proof To simplify notations set a = ±h̄di ai j/2, so that ea = q
±ai j
i . By Lemma 2.7

ξi (u)x
±
j,sξi (u)

−1 = u − σ±j + a

u − σ±j − a
x±j,s

so that

[ti (u), x±j,s] = log

(

1− (σ±j − a)u−1

1− (σ±j + a)u−1

)

x±j,s

Using

B
(

log(1− pu−1)
)

= 1− epv

v
(2.7)

this yields

[Bi (v), x±j,s] =
(

1− e(σ
±
j −a)v

v
− 1− e(σ

±
j +a)v

v

)

x±j,s =
eav − e−av

v
eσ

±
j vx±j,s

as claimed. ��
Remark Expanding the right-hand side of (2.6) as a power series in v yields the
commutation relations

[ti,r , x±j,s] = ±di ai j

�r/2�
∑

l=0

(

r
2l

)

(h̄di ai j/2)2l

2l + 1
x±j,r+s−2l

These relations were obtained in this form in [22, Lemma 1.4].
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2.10 The operators λ±i (v)

We introduce below operators which straighten monomials of the form x±i,mξ, ξ ∈ Y 0,

into elements of Y 0 · Y±.

Proposition There are operators {λ±i;s}i∈I,s∈N on Y 0 such that the following holds

(1) For any ξ ∈ Y 0, the elements λ±i;s(ξ) ∈ Y 0 are uniquely determined by the
requirement that, for any m ∈ N,

x±i,mξ =
∑

s≥0

λ±i;s(ξ)x
±
i,m+s (2.8)

(2) For any ξ, η ∈ Y 0,

λ±i;s(ξη) =
∑

k+l=s

λ±i;k(ξ)λ
±
i;l(η) (2.9)

(3) The operator λi;s : Y 0 → Y 0 is homogeneous of degree −s.
(4) Let λ±i (v) : Y 0 → Y 0[v] be given by

λ±i (v)(ξ) =
∑

s≥0

λ±i;s(ξ) v
s

and extend the N-grading on Y 0 to Y 0[v] by deg(v) = 1. Then λ±i (v) is an algebra
homomorphism of degree 0.

(5) λε1
i1
(v1) and λε2

i2
(v2) commute for any i1, i2 ∈ I and ε1, ε2 ∈ {±}.

(6) For any i ∈ I,

λ+i (v)λ
−
i (v) = id = λ−i (v)λ

+
i (v)

(7) For any i, j ∈ I,

λ±j (v1) (Bi (v2)) = Bi (v2)∓ q
ai jv2
i − q

−ai jv2
i

v2
ev1v2

(8) For any i ∈ I and r ∈ N,

λ±j (v)(ti,r ) = ti,r ∓ di ai jv
r mod h̄

Proof (1)–(2) by Lemma 2.7, (2.8) holds when ξ is one of the generators ξ j,r of Y 0.
Since (2.8) holds for ξη if it holds for ξ, η ∈ Y 0, with λi;s(ξη) given by (2.9), the λi;s
can be defined as operators on Y 0. The fact they are uniquely characterised by (2.8)
and satisfy (2.9) follows from Corollary 2.5.
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(3) the linear independence of the elements on the right-hand side of (2.8) implies
that deg(λi;s(ξ)) = deg(ξ)−s for any homogeneous ξ ∈ Y 0. (4) is a rephrasing of (2)
and (3). (5) and (6) follow from (7) since the elements {ti,n} generate Y 0. (7) follows
from Lemma 2.9. (8) is a direct consequence of (7). ��
Remark Using the shift operators, the relation (2.8) can be rewritten as

x±i,mξ = λ±i (σ
±
i )(ξ) x±i,m

3 Homomorphisms of geometric type

Let ̂Yh̄g be the completion of Yh̄(g) with respect to its N-grading. In this section, we
define an assignment

� : {Hi,r , Ei,r , Fi,r }i∈I,r∈Z −→ ̂Yh̄g

and find necessary and sufficient conditions for � to extend to a homomorphism
Uh̄(Lg)→ ̂Yh̄g.

3.1 Definition of �

Define

�(Hi,0) = d−1
i ti,0

and, for r ∈ Z
×

�(Hi,r ) = h̄

qi − q−1
i

∑

k≥0

ti,k
rk

k! =
Bi (r)

qi − q−1
i

where Bi (v) is the formal power series (2.5). Let ˜U 0 be the polynomial ring on
the generators {Hi,r }i∈I,r∈Z.1 The above assignment extends to an homomorphism
�0 : ˜U 0 →̂Y 0.

Let now {g±i,m}i∈I,m∈N be elements of ̂Y 0 and define further

�(Ei,0) =
∑

m≥0

g+i,m x+i,m

�(Fi,0) =
∑

m≥0

g−i,m x−i,m

1
˜U0 is isomorphic to the subalgebra U0 of Uh̄(Lg) generated by {Hi,r }i∈I,r∈Z by the PBW Theorem for

Uh̄(Lg) [1], but we shall not need this fact.
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In terms of the shift operators σ±i , the above may be written as

�(Ei,0) = g+i (σ
+
i )x

+
i,0 (3.1)

�(Fi,0) = g−i (σ
−
i )x

−
i,0 (3.2)

where

g±i (v) =
∑

m≥0

g±i,mv
m ∈ Ŷ 0[v]

with the completion of Y 0[v] taken with respect to the N-grading which extends that
on Y 0 by deg(v) = 1.

3.2 Homomorphisms of geometric type

If � : Uh̄(Lg) → Ŷh̄(g) is a homomorphism of the above form, we shall say that it
is of geometric type since its form is related to the Chern character in the geometric
realisations of Uh̄(Lg) and Yh̄(g) discussed in Sect. 1.2.

Such a homomorphism has the following properties

(1) It restricts to a homomorphism Uh̄(Lsli2) → ̂Yh̄(sl
i
2) for any I, where

Uh̄(Lsli2) ⊂ Uh̄(Lg) and Yh̄(sl
i
2) ⊂ Yh̄(g) are the subalgebras generated by

{Ei,r , Fi,r , Hi,r }r∈Z and {x±i,k, ξi,k}k∈N respectively.

(2) It restricts to a homomorphism Uh̄(Lb±)→ Ŷh̄(b±), where Uh̄(Lb+),Uh̄(Lb−)
⊂ Uh̄(Lg) and Yh̄(b±) ⊂ Yh̄(g) are the subalgebras generated respectively by
{Ei,r , Hi,r }i∈I,r∈Z, {Fi,r , Hi,r }i∈I,r∈Z and {x±i,k, ξi,k}i∈I,k∈N.

Note however that, unless g±i,m = 0 for any i ∈ I and m ≥ 1, � does not map the

quantum group Uh̄g = 〈Ei,0, Fi,0, Hi,0〉i∈I ⊂ Uh̄(Lg) to Ug[[h̄]] ⊂ Ŷh̄(g).

3.3

The following result shows that the requirement that � extends to an algebra homo-
morphism determines its value on generators Ei,k, Fi,k .

Proposition The assignment� is compatible with relations (QL2)–(QL3) if, and only
if

�(Ei,k) = ekσ+i g+i (σ
+
i )x

+
i,0 (3.3)

�(Fi,k) = ekσ−i g−i (σ
−
i )x

−
i,0 (3.4)
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Proof We only consider the case of the E ′s. Let i, j ∈ I and k ∈ Z. By (Y2),

[�(Hi,0),�(E j,k)] = [d−1
i ξi,0, ekσ+j g+j (σ

+
j )x

+
j,0]

= ekσ+j g+j (σ
+
j )[d−1

i ξi,0, x+j,0]
= ai j�(E j,k)

so that � is compatible with (QL2). Next, if r ∈ Z
×, Lemma 2.9 yields

[�(Hi,r ),�(E j,k)] = 1

qi − q−1
i

[Bi (r), ekσ+j g+j (σ
+
j )x

+
j,0]

= q
rai j
i − q

−rai j
i

r(qi − q−1
i )

erσ+j ekσ+j g+j (σ
+
j )x

+
j,0

= [rai j ]qi

r
�(E j,r+k)

and � is compatible with (QL3).
Conversely, if � is compatible with (QL3) then �(Ei,r ) = r/[2r ]qi [�(Hi,r ),

�(Ei,0)] for r 	= 0 and the computation above shows that this is equal to erσ+i �(Ei,0).
��

3.4 Necessary and sufficient conditions

Let λ±i (v) : Y 0 → Y 0[v] be the homomorphism defined in Proposition 2.10.

Theorem The assignment� extends to an algebra homomorphism Uh̄(Lg)→ Ŷh̄(g)
if, and only if the following conditions hold

(A) For any i, j ∈ I

g+i (u)λ
+
i (u)(g

−
j (v)) = g−j (v)λ

−
j (v)(g

+
i (u))

(B) For any i ∈ I and k ∈ Z

eku g+i (u)λ
+
i (u)(g

−
i (u))

∣

∣

∣

um=ξi,m
= �0

(

ψi,k − φi,k

qi − q−1
i

)

(C) For any i, j ∈ I and a = di ai j/2

g±i (u)λ
±
i (u)(g

±
j (v))

(

eu − ev±ah̄

u − v ∓ ah̄

)

= g±j (v)λ
±
j (v)(g

±
i (u))

(

ev − eu±ah̄

v − u ∓ ah̄

)

Proof By construction and Proposition 3.3,� is compatible with the relations (QL1)–
(QL3). The result then follows from Lemmas 3.5 and 3.6 below and the proof of the
q-Serre relations (Proposition 8.1). ��
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3.5

Lemma � is compatible with the relation (QL5) if, and only if (A) and (B) hold.

Proof Compatibility with (QL5) reads

[�(Ei,k),�(Fj,l)] = δi j�
0

(

ψi,k+l − φi,k+l

qi − q−1
i

)

for i, j ∈ I and k, l ∈ Z. We begin by computing the left-hand side. To this end, it
will be convenient to write formulae (3.3)–(3.4) as

�(Ei,k) =
∑

m≥0

g+,(k)i,m x+i,m and �(Fi,k) =
∑

m≥0

g−,(k)i,m x−i,m

where g±,(k)i,m ∈̂Y 0 are defined by
∑

m≥0 g±,(k)i,m vm = ekvg±i (v). This yields

�(Ei,k)�(Fj,l) =
∑

m,n≥0

g+,(k)i,m x+i,m g−,(l)j,n x−j,n

=
∑

m,n,s≥0

g+,(k)i,m λ+i,s
(

g−,(l)j,n

)

x+i,m+s x−j,n

=
∑

m,n,s≥0

g+,(k)i,m λ+i,s
(

g−,(l)j,n

) (

x−j,n x+i,m+s + δi jξi,m+n+s

)

where we used (Y5). Similarly, �(Fj,l)�(Ei,k)=∑m,n,s g−,(l)j,m λ−j,s
(

g+,(k)i,n

)

x−j,m+s x+i,n . Define R(k,l), L(k,l) ∈̂Y 0[[u, v]] by

R(k,l) =
∑

m≥0

g+,(k)i,m um
∑

s≥0

λ+i,sus

⎛

⎝

∑

n≥0

g−,(l)j,n vn

⎞

⎠ = ekuelvg+i (u)λ
+
i (u)(g

−
j (v))

L(k,l) =
∑

m≥0

g−,(l)j,m vm
∑

s≥0

λ−j,sv
s

⎛

⎝

∑

n≥0

g+,(k)i,n un

⎞

⎠ = ekuelvg−j (v)λ
−
j (v)(g

+
i (u))

By the PBW Theorem 2.5, � is compatible with (QL5) if, and only if R(k,l) = L(k,l)

and, for i = j ,

R(k,l)
∣

∣

∣

umvn=ξi,m+n
= �0

(

ψi,k+l − φi,k+l

qi − q−1
i

)

The first equation is clearly equivalent to (A) and the second to (B). ��
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3.6

Lemma � is compatible with the relation (QL4) if, and only if (C) holds.

Proof We prove the claim for the E’s only. Compatibility with (QL4) reads

�(Ei,k+1)�(E j,l )− q
ai j
i �(Ei,k)�(E j,l+1)=q

ai j
i �(E j,l )�(Ei,k+1)−�(E j,l+1)�(Ei,k)

for any i, j ∈ I and k, l ∈ Z. Assume first i 	= j and set a = di ai j/2, so that
q

ai j
i = eah̄ . Since

�(Ei,r )�(E j,s) = erσ+i esσ+j g+i (σ
+
i )λ

+
i (σ

+
i )

(

g+j (σ
+
j )
)

x+i,0x+j,0

the above reduces to

ekσ+i elσ+j g+i (σ
+
i )λ

+
i (σ

+
i )(g

+
j (σ

+
j ))

(

eσ
+
i − eσ

+
j +ah̄

)

x+i,0x+j,0

= ekσ+i elσ+j g+j (σ
+
j )λ

+
j (σ

+
j )(g

+
i (σ

+
i ))

(

eσ
+
i +ah̄ − eσ

+
j

)

x+j,0x+i,0

Using (1) of Proposition 2.8, we get

(

eσ
+
i − eσ

+
j +ah̄

)

x+i,0x+j,0 =
eσ

+
i − eσ

+
j +ah̄

σ+i − σ+j − ah̄

(

σ+i − σ+j − ah̄
)

x+i,0x+j,0

= eσ
+
i − eσ

+
j +ah̄

σ+i − σ+j − ah̄

(

σ+i − σ+j + ah̄
)

x+j,0x+i,0

The PBW Theorem 2.5 then shows that the above is equivalent to (C).
Assume now that i = j , then

�(Ei,r )�(Ei,s) =
(

erσ+i g+i (σ
+
i )x

+
i,0

) (

esσ+i g+i (σ
+
i )x

+
i,0

)

= μ
(

erσ+i,(1)esσ+i,(2)g+i (σ
+
i,(1))λ

+
i (σ

+
i,(1))

(

g+i (σ
+
i,(2))

)

x+i,0 ⊗ x+i,0
)

The compatibility with (QL4) therefore reduces to

μ
(

ekσ+i,(1)elσ+i,(2)g+i (σ
+
i,(1))λ

+
i (σ

+
i,(1))(g

+
i (σ

+
i,(2)))

(

eσ
+
i,(1) − eσ

+
i,(2)+di h̄

)

x+i,0 ⊗ x+i,0
)

= μ
(

elσ+i,(1)ekσ+i,(2)g+i (σ
+
i,(1))λ

+
i (σ

+
i,(1))(g

+
i (σ

+
i,(2)))

(

eσ
+
i,(2)+di h̄ − eσ

+
i,(1)

)

x+i,0 ⊗ x+i,0
)

that is, to

μ
((

ekσ+i,(1)elσ+i,(2) + elσ+i,(1)ekσ+i,(2)
)

g+i (σ
+
i,(1))λ

+
i (σ

+
i,(1))(g

+
i (σ

+
i,(2)))

(

eσ
+
i,(1) − eσ

+
i,(2)+di h̄

)

x+i,0 ⊗ x+i,0
)

= 0
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By (2) of Proposition 2.8 and Corollary 2.8, this equation is equivalent to the require-
ment that

g+i (u)λ
+
i (u)(g

+
i (v))

(

eu − ev+di h̄

u − v − di h̄

)

be symmetric under u ↔ v, which is precisely condition (C) for i = j . ��

3.7

For later use, we shall need the following

Lemma Let {g±i (u)}i∈I ⊂ Ŷ 0[u] be elements satisfying condition (B) of Theorem
3.4. Then,

g±i (u) =
1

d±i
mod Ŷ 0[u]+

where {d±i }i∈I ⊂ C
× satisfy d+i d−i = di for each i ∈ I. In particular, each g±i (u) is

invertible.

Proof Condition (B) for k = 0 yields

g+i (u)λ
+
i (u)

(

g−i (u)
)∣

∣

um=ξi,m = �0

⎛

⎝

e
h̄di
2 Hi,0 − e−

h̄di
2 Hi,0

qi − q−1
i

⎞

⎠

Computing mod h̄, and a fortiori mod Ŷ 0[u]+, yields

�0

⎛

⎝

e
h̄di
2 Hi,0 − e−

h̄di
2 Hi,0

qi − q−1
i

⎞

⎠ = �0 (Hi,0
) = d−1

i ti,0

Write g±i (u) = p±i mod Ŷ 0[u]+, where p±i ∈ C[t j,0] j∈I. Computing mod Ŷ 0[u]+,
we get

g+i (u)λ
+
i (u)

(

g−i (u)
)∣

∣

∣

um=ξi,m
= p+i (t j,0)λ

+
i;0(p−i (t j,0))ξi,0 = p+i (t j,0)p−i (t j,0 − di ai j )ξi,0

where we used (8) of Proposition 2.10. Comparing both sides and using ξi,0 = ti,0
yields the claim. ��

4 Existence of homomorphisms

In this section, we construct an explicit homomorphism Uh̄(Lg)→ Ŷh̄(g) by exhibit-
ing a joint solution to equations (A)–(C) of Theorem 3.4. We begin by giving an
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intrinsic expression for the right-hand side of equation (B) (Proposition 4.2). Until
4.7, we fix i ∈ I and consider the subalgebras ˜U 0

i ⊂ ˜U 0, Y 0
i ⊂ Y 0 generated by

{Hi,r }r∈Z and {ξi,r }r∈N respectively.

4.1 The functions G(v) and γi(v)

Consider the formal power series

G(v) = log

(

v

ev/2 − e−v/2

)

∈ vQ[[v]] (4.1)

Define γi (v) ∈ ̂Y 0
i [v]+ by

γi (v) = h̄
∑

r≥0

ti,r
r ! (−∂v)

r+1 G(v)

Recall that Bi (v) = h̄
∑

r≥0 ti,r
vr

r ! is the inverse Borel transform of ti (u). This allows
us to write γi (u) more compactly as

γi (v) = −Bi (−∂v)G ′(v) (4.2)

4.2

Proposition The following holds in ̂Y 0
i for any k ∈ Z

�0

(

ψi,k − φi,k

qi − q−1
i

)

= h̄

qi − q−1
i

ekv exp (γi (v))

∣

∣

∣

vn=ξi,n

The above identity will be proved in Sects. 4.3–4.6 by injectively mapping both
sides to a family of polynomial rings, and verifying their equality there.

4.3 Universal Drinfeld polynomials

Fix an integer m ≥ 1. Following [26,33], consider the rings

S(m) = C[q±1, A±1
1 , . . . , A±1

m ]Sm

R(m) = C[h̄, a1, . . . , am]Sm

Define a homomorphism DU : ˜U 0
i → S(m) by

DU (ψi (z)) =
m
∏

p=1

qi z − q−1
i Ap

z − Ap
= DU (φi (z)) (4.3)
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where the first and second equalities are obtained by expanding the middle term in
powers of z−1 and z respectively. Similarly, define DY : Y 0

i → R(m) by

DY (ξi (u)) =
m
∏

p=1

u + di h̄ − ap

u − ap
(4.4)

The homomorphism DU (resp. DY ) gives the action of ψi (z), φi (z) (resp. ξi (u)) on
the highest weight vector of the indecomposable Uh̄(Lsl2) (resp. Yh̄(sl2)) module with
Drinfeld polynomial (1− A−1

1 z) . . . (1− A−1
m z) (resp. (u − a1) . . . (u − am)).

4.4

The following result spells out the image of the generators of ˜U 0
i and Y 0

i under DU

and DY respectively.

Proposition

(1) The following holds: DU (ψi,0) = qm
i = DU (φi,0)

−1 and, for any r ∈ N
∗

DU (ψi,r ) = (qi − q−1
i )

m
∑

p=1

Ar
p

∏

p′ 	=p

qi Ap − q−1
i Ap′

Ap − Ap′
(4.5)

DU (φi,−r ) = −(qi − q−1
i )

m
∑

p=1

A−r
p

∏

p′ 	=p

qi Ap − q−1
i Ap′

Ap − Ap′
(4.6)

Moreover, DU maps Hi,0 to m and, for any r ∈ Z
∗,

DU ((qi − q−1
i )Hi,r ) = 1− q−2r

i

r

m
∑

p=1

Ar
p (4.7)

(2) The homomorphism DY maps ξi,0 to di m and, for any r ∈ N

DY (ξr ) = di

m
∑

p=1

ar
p

∏

p′ 	=p

ap − ap′ + di h̄

ap − ap′
(4.8)

Moreover, for any r ∈ N,

DY (tr ) = 1

r + 1

m
∑

p=1

ar+1
p − (ap − di h̄)r+1

h̄
(4.9)



294 S. Gautam, V. Toledano Laredo

(3) If Bi (v) ∈ Y 0
i [[v]] is the series defined by (2.5), then

DY (Bi (v)) = 1− e−di h̄v

v

m
∑

p=1

eapv (4.10)

Proof

(1) The fact that DU (ψi,0) = qm
i = DU (φi,0)

−1 follows by taking the values of the
middle term P(z) in (4.3) at z = ∞ and z = 0 respectively. Next, the partial
fraction decomposition of P(z) is readily seen to be

m
∏

p=1

qi z − q−1
i Ap

z − Ap
=qm

i +(qi − q−1
i )

m
∑

p=1

Ap

⎛

⎝

∏

p′ 	=p

qi Ap−q−1
i Ap′

Ap − Ap′

⎞

⎠

1

z − Ap

(4.11)

The relations (4.5)–(4.6) follow by expanding this into powers of z−1 and z
respectively. For later use, note that the evaluation of (4.11) at z = 0 yields the
identity

DU (ψi,0 − φi,0) = qm
i − q−m

i = (qi − q−1
i )

m
∑

p=1

∏

p′ 	=p

qi Ap − q−1
i Ap′

Ap − Ap′
(4.12)

Since DU (ψi,0) = qm
i , it follows that DU (Hi,0) = m, and

DU

⎛

⎝exp

⎛

⎝(qi − q−1
i )

∑

s≥1

Hi,s z−s

⎞

⎠

⎞

⎠ = DU (ψ−1
i,0 ψi (z)) =

m
∏

p=1

z − q−2
i Ap

z − Ap

taking the log of both sides and expanding in powers of z−1 (resp. z) yields (4.7)
for r > 0 (resp. r < 0).

(2) The fact that DY (ξi,0) = di m follows by taking the coefficient of u−1 in (4.4).
The partial fraction decomposition of DY (ξi (u)) is

m
∏

p=1

u + di h̄ − ap

u − ap
= 1+ di h̄

m
∑

p=1

⎛

⎝

∏

p′ 	=p

ap − ap′ + di h̄

ap − ap′

⎞

⎠

1

u − ap

and (4.8) follows by taking the coefficient of u−r−1. Taking the log of both sides
of (4.4) yields

DY (ti (u)) =
∑

p

− log
(

1− apu−1
)

+ log
(

1− (ap − di h̄)u
−1
)

(4.13)

and therefore (4.9).
(3) Follows by applying (2.7) to (4.4). ��
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Corollary The homomorphism DY : Y 0
i →

⊕

m≥1 R(m) is injective.

Proof This follows from (4.9) and the fact that the power sums
∑

p ar
p are algebraically

independent. ��

4.5

Let R̂(m) be the completion of R(m) with respect to the N-grading defined by
deg(h̄) = deg(ap) = 1. Since the map DY : Y 0

i → R(m) preserves the grading,

it extends to a homomorphism ̂Y 0
i → R̂(m).

Corollary Let ch : S(m)→ R(m) be the homomorphism defined by

q �−→ eh̄/2 and Ap �−→ eap

Then, the following diagram commutes

˜U 0
i

DU
��

�0

��

S(m)

ch
��

̂Y 0
i

DY
�� R̂(m)

where �0 is defined in Sect. 3.1.

Proof It suffices to check the commutativity on the generators {Hi,r }r∈Z of ˜U 0
i . The

statement now follows from (4.7), (4.10) and the fact that, for r 	= 0, �0(Hi,r ) =
Bi (v)/(qi − q−1

i )

∣

∣

∣

v=r
. ��

4.6 Proof of Proposition 4.2

By Corollaries 4.4 and 4.5, it suffices to prove that, for any k ∈ Z,

ch

(

DU

(

ψi,k − φi,k

qi − q−1
i

))

= h̄

qi − q−1
i

DY
(

ekv exp (γi (v))

∣

∣

∣

vn=ξn

)

By (4.5)–(4.6) and (4.12), the left-hand side is equal to

ch

⎛

⎝

∑

p

Ak
p

∏

p′ 	=p

qi Ap − q−1
i Ap′

Ap − Ap′

⎞

⎠
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We now compute the right-hand side. By (4.2) and (4.10),

DY (γi (v)) =
∑

p

e−ap∂v
1− edi h̄∂v

∂v
∂vG(v) =

∑

p

G(v − ap)− G(v − ap + di h̄)

where we used ea∂vG(v) = G(v + a). Thus,

DY
(

ekv exp (γi (v))
)

= ekv
∏

p

v − ap

v − ap + di h̄

qi ev − q−1
i eap

ev − eap

By (4.8), the substitution vn = ξi,n in a formal power series F ∈ ̂Y 0
i [v] gives

DY (F(v)|vn=ξn ) = di

∑

p

DY (F(ap))
∏

p′ 	=p

ap − ap′ + di h̄

ap − ap′

Since (v−ap)/(ev−eap )
∣

∣

v=ap
= e−ap and (qi ev−q−1

i eap )/(v − ap+di h̄)
∣

∣

∣

v=ap
=

eap (qi−q−1
i )/di h̄, this implies that

DY
(

ekv exp (γi (v))|vn=ξi,n
)

= qi − q−1
i

h̄

∑

p

ekap
∏

p′ 	=p

ap − ap′

ap − ap′ + di h̄

qi eap − q−1
i eap′

eap − eap′
ap − ap′ + di h̄

ap − ap′

= qi − q−1
i

h̄

∑

p

ekap
∏

p′ 	=p

qi eap − q−1
i eap′

eap − eap′

as claimed.

4.7 A joint solution to equations (A)–(C)

Proposition 4.2 suggests replacing equation (B) of Theorem 3.4 by the stronger require-
ment that, for any i ∈ I

g+i (v)λ
+
i (v)(g

−
i (v)) =

h̄

qi − q−1
i

exp (γi (v)) (˜B)

Using equation (A) for j = i and u = v then shows that

g−i (v)λ
−
i (v)(g

+
i (v)) =

h̄

qi − q−1
i

exp (γi (v))
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Applying the operatorλ−i (v) to the first of these equations, and usingλ+i (v)λ
−
i (v) = id

(Proposition 2.10) and the second equation, yields λ−i (v)(γi (v)) = γi (v). Similarly,
applying λ+i (v) to the second of these equations yields λ+i (v)(γi (v)) = γi (v). This
suggests in turn that a solution to the above equations may be given by g±i (v) = gi (v),
where

gi (v) =
(

h̄

qi − q−1
i

)1/2

exp

(

γi (v)

2

)

(4.14)

We now show that this is indeed the case.

Theorem The series g±i (v) = gi (v) satisfy the conditions (A),(˜B) and (C) of Theorem

3.4, and therefore give rise to a homomorphism � : Uh̄(Lg)→ Ŷh̄g.

4.8

We shall need the following

Lemma Let i, j ∈ I, and set a = di ai j/2. Then,

λ±i (u)
(

g j (v)
) = g j (v) exp

(

±G(v − u + ah̄)− G(v − u − ah̄)

2

)

where G(v) is given by (4.1).

Proof By Proposition 2.10,

λ±i (u)(B j (v)) = B j (v)∓ eah̄v − e−ah̄v

v
euv

Since γ j (v) = −B j (−∂v)∂vG(v), we get

λ±i (u)γ j (v) = γ j (v)± eah̄∂v − e−ah̄∂v

∂v
e−u∂v ∂vG(v)

= γ j (v)± (G(v − u + ah̄)− G(v − u − ah̄))

The claim follows by exponentiating. ��

4.9 Proof of condition (A)

We need to prove that for every i, j ∈ I, we have

gi (u)λ
+
i (u)(g j (v)) = g j (v)λ

−
j (v)(gi (u))
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By Lemma 4.8, this is equivalent to

gi (u)g j (v) exp

(

G(v − u + ah̄)− G(v − u − ah̄)

2

)

= gi (u)g j (v) exp

(

G(u − v − ah̄)− G(u − v + ah̄)

2

)

The result now follows since G is an even function.

4.10 Proof of condition (˜B)

Lemma 4.8 implies that

gi (u)λ
+
i (u)(gi (u)) = gi (u)

2 exp

(

G(di h̄)− G(−di h̄)

2

)

= gi (u)
2

= h̄

qi − q−1
i

exp (γi (u))

where the second equality holds because G is even.

4.11 Proof of condition (C)

Let i, j ∈ I and set a = di ai j/2. We need to prove that

gi (u)λ
±
i (u)(g j (v))

eu − ev±ah̄

u − v ∓ ah̄
= g j (v)λ

±
j (v)(gi (u))

ev − eu±ah̄

v − u ∓ ah̄

By Lemma 4.8 and the fact that G is even, we get the following equivalent assertion

exp (G(v − u ± ah̄)− G(v − u ∓ ah̄))
eu − ev±ah̄

u − v ∓ ah̄
= ev − eu±ah̄

v − u ∓ ah̄

Using the definition of G, the above becomes the equality

(

v − u ± ah̄

ev±ah̄ − eu

)(

ev − eu±ah̄

v − u ∓ ah̄

)(

eu − ev±ah̄

u − v ∓ ah̄

)

= ev − eu±ah̄

v − u ∓ ah̄

5 Uniqueness of homomorphisms

The aim of this section is to prove that homomorphisms of geometric type are unique
up to conjugation and scaling.
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5.1

Let G be the set of solutions g = {g±i (u)}i∈I of equations (A)–(C) of Theorem 3.4.

Given a collection r = {r±i (u)}i∈I of invertible elements of Ŷ 0[u], set

r · g = {r±i (u) · g±i (u)}i∈I

Lemma Let g ∈ G. Then, r · g ∈ G if and only if the following holds

(A0) For any i, j ∈ I,

r+i (u)λ
+
i (u)(r

−
j (v)) = r−j (v)λ

−
j (v)(r

+
i (u))

(B0) For any i ∈ I,

r+i (u)λ
+
i (u)(r

−
i (u)) = 1 = r−i (u)λ

−
i (u)(r

+
i (u))

(C±0 ) For any i, j ∈ I,

r±i (u)λ
±
i (u)(r

±
j (v)) = r±j (v)λ

±
j (v)(r

±
i (u))

Proof Let h = r · g. The following assertions are straightforward to check

• h satisfies (A) if and only if r satisfies (A0).
• h satisfies (B) if r satisfies (B0).
• h satisfies (C) if and only if r satisfies (C±0 ).

There remains to prove that if h lies in G, then r satisfies (B0).
We claim that (A0) and (C±0 ) imply that ci (u) = r+i (u)λ

+
i (u)(r

−
i (u)) lies in

C[[h̄, u]]. Assuming this, write ci (u) =∑

n c(n)i un , where c(n)i ∈ C[[h̄]]. Then,

(

h+i (u)λ
+
i (u)(h

−
i (u))

)∣

∣

um=ξi,m =
(

ci (u)g
+
i (u)λ

+
i (u)(g

−
i (u))

)∣

∣

um=ξi,m
=
∑

n≥0

c(n)i

(

g+i (u)λ
+
i (u)(g

−
i (u))

)∣

∣

um=ξi,m+n

= ci (σ
0
i )
(

g+i (u)λ
+
i (u)(g

−
i (u))

)∣

∣

um=ξi,m

where σ 0
i : Y 0 → Y 0 is the algebra homomorphism defined by σ 0

i (ξ j,m) = ξ j,m+δi j .
Since both h and g satisfy (B) with k = 0, this yields

�0

⎛

⎝

e
h̄di
2 Hi,0 − e−

h̄di
2 Hi,0

qi − q−1
i

⎞

⎠ = ci (σ
0
i )�

0

⎛

⎝

e
h̄di
2 Hi,0 − e−

h̄di
2 Hi,0

qi − q−1
i

⎞

⎠

An inductive argument using the C[h̄]-linear N-grading on Y 0 given by deg(ξ j,m) = m

and deg(h̄) = 0 then shows that c(0)i = 1 and c(n)i = 0 for any n ≥ 1, so that r satisfies
(B0).
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To prove our claim, set

ci (u) = r+i (u)λ
+
i (u)(r

−
i (u)) = r−i (u)λ

−
i (u)(r

+
i (u))

so that r−i (u) = ci (u)λ
−
i (u)(r

+
i (u))

−1. By (A0), the following holds for every i, j ∈ I

r+i (u)λ
+
i (u)

(

c j (v)λ
−
j (v)(r

+
j (v))

−1
)

= c j (v)λ
−
j (v)(r

+
j (v)

−1)λ−j (v)(r
+
i (u))

Since λ+i (u) and λ−j (v) commute, we get

λ+i (u)(c j (v))
(

r+i (u)λ
−
j (v)(r

+
j (v))

)

= c j (v)λ
−
j (v)

(

r+i (u)λ
+
i (u)(r

+
j (v))

)

= c j (v)λ
−
j (v)

(

r+j (v)λ
+
j (v)(r

+
i (u))

)

= c j (v)
(

r+i (u)λ
−
j (v)(r

+
j (v))

)

where the second equality uses (C+0 ) and the third one λ−j (v)λ
+
j (v) = 1. We have

therefore proved that

λ+i (u)(c j (v)) = c j (v) for every i, j ∈ I

By definition of the operators λ±i , this implies that the coefficients of c j (v) lie in the
centre of Yh̄(g), which is trivial. ��

5.2

The uniqueness of homomorphisms of geometric type relies on the following

Proposition Let {r+i (u)}i∈I ⊂ 1 + Ŷ 0[u]+ be a collection of invertible elements

satisfying condition (C+
0 ) of Lemma 5.1. Then, there exists an element ξ ∈ 1 +̂Y 0+

such that, for any i ∈ I

r+i (u) = ξ · λ+i (u)(ξ)−1

Moreover, if ζ ∈̂Y 0× is any element such that r+i (u) = ζ · λ+i (u)(ζ )−1, then ζ = cξ
for some c ∈ C[[h̄]]×.

The proof of Proposition 5.2 is given in Sects. 5.3–5.9.

5.3

We begin by linearising the problem. Set

r i (u) = log(ri (u)) ∈ Ŷ 0[u]+
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By condition (C+
0 ), the following holds for any i, j ∈ I

(λ+i (u)− 1)(r j (v)) = (λ+j (v)− 1)(r i (u)) (5.1)

and we need to show that

r i (u) = (λ+i (u)− 1)η (5.2)

for some η ∈̂Y 0+.

5.4 Rank 1 case

We assume first that |I| = 1 and accordingly drop the subscript i from our formulae.
We shall prove (5.2) by working with an adapted system of generators of Y 0.

Recall that, by Proposition 2.10,

(λ+(u)− 1)B(v) = −eh̄v − e−h̄v

v
euv

Define B ′(v) =
∑

k≥0

vk

k! t ′k by equating the coefficients of v in

B ′(v) = − v

eh̄v − e−h̄v
B(v) = − h̄v

eh̄v − e−h̄v

∑

n≥0

vn

n! tn

The elements {t ′k}k∈N give another system of generators of Y 0 which are homogeneous,
with deg(t ′k) = k = deg(tk) for any k ∈ N, and satisfy

λ+(u)(t ′k) = t ′k + uk (5.3)

5.5

Since the operator λ+(u) : Y 0 → Y 0[u] is homogeneous with respect to the N-
grading extending that on Y 0 by deg(u) = 1, it suffices to prove (5.2) when r(u) is
homogeneous of degree n ∈ N. Moreover, since λ+(u) is C[h̄]-linear and the formulae
(5.3) do not involve h̄, we may further assume that the coefficients of r(u) lie in the
C-subalgebra Y 0 ⊂ Y 0 generated by the {t ′k}.

An element of Y 0[u]n has the form

r̄(u) =
∑

|μ|≤n

aμt ′μun−|μ| (5.4)
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where aμ ∈ C[t ′0] and, for a partition μ of length l, we define t ′μ = t ′μ1
. . . t ′μl

. The

proof of the existence of η ∈ Y 0
n such that (λ+(u) − 1)(η) = r(u) proceeds in two

steps:

(1) Show that, modulo elements of the form (λ+(u)− 1)(η),

r̄(u) =
∑

|μ|<n

aμt ′μun−|μ| (5.5)

where aμ ∈ C do not depend on t ′0.

(2) Show that any r(u) of the form (5.5) is equal to (λ+(u)−1)(η) for some η ∈ Y 0
n .

5.6 Proof of (1)

For r̄(u) ∈ Y 0
n of the form (5.4), choose bν ∈ C[t ′0] for every ν � n such that

bν(t
′
0 + 1)− bν(t

′
0) = aν(t

′
0)

Then

r̄(u)− (λ+(u)− 1)

(

∑

ν�n

bν t ′ν

)

=
∑

|μ|<n

a′μt ′μun−|μ|

for some a′μ ∈ C[t ′0], so that we may assume that r(u) is of the form (5.4) with aμ = 0
for any μ � n.

Write now

(λ+(v)− 1)r(u) =
∑

|μ|<n

(

aμ(t0 + 1)− aμ(t0)
)

t ′μun−|μ|

+
∑

|μ|<n

aμ(t0 + 1)

⎛

⎝

∑

ν�μ

c(ν, μ)t ′νv|μ|−|ν|
⎞

⎠ un−|μ|

where c(ν, μ) is the number of ways of obtaining ν by removing rows from μ. By
(5.1), the above expression is symmetric in u and v. Its value at u = 0, which is 0,
must therefore equal its value at v = 0, thus leading to

∑

|μ|<n

(

aμ(t0 + 1)− aμ(t0)
)

t ′μun−|μ| = 0

which implies that aμ ∈ C for any μ.
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5.7 Proof of (2)

Let r̄(u) be of the form (5.5). For any 0 ≤ l ≤ n, write

rl(u) =
∑

|μ|<n
l(μ)=l

aμt ′μun−|μ|

so that r̄(u) = ∑

l r̄l(u). We proceed by induction on the largest positive integer k
such that r̄k(u) 	= 0. If k = 0, then r̄(u) = cun = (λ+(u)− 1)(ct ′n).

Assume now that k > 0 and let D(u) : Y 0 → Y 0[u] be the differential operator
D(u) =∑

m≥1 um∂t ′m . Since (λ+(u)− 1)(t ′k) = uk we get, for any partition μ

(λ+(u)− 1)(t ′μ) = D(u)(t ′μ)+ terms of smaller length

Thus, (5.1) implies that

D(u)r̄k(v) = D(v)r̄k(u)

This cross-derivative condition implies the existence of η ∈ Y 0
n such that rk(u) =

D(u)η. This implies that r̄(u)− (λ+(u)− 1)(η) has smaller k.
This completes the proof of the existence part of Proposition 5.2 when g is of

rank 1.

5.8 Arbitrary rank

The argument for arbitrary g rests on the following

Lemma There exist generators {�i,r }i∈I,r∈N of Y 0 which are homogeneous, with
deg(�i,r ) = r and such that

λ±i (u)� j,r = � j,r ± δi, j u
r

Proof By Proposition 2.10, the generating series B j (v) = h̄
∑

r≥0 t j,rv
r/r ! satisfy

(λ±i (u)− 1)h̄−1 B j (v) = ∓Qi j (v)e
uv

where Qi j (v) = 2 sinh(h̄di ai jv/2)/h̄v. Since Qi j = di ai j mod h̄, the matrix Q =
(Qi j ) is invertible. Set B ′i (v) = −h̄−1 ∑

j Q−1
i j B j (v). Then (λ±i (u) − 1)B ′j (v) =

±δi j euv which, in terms of the expansion B ′i (v) =
∑

�i,rv
r/r ! yields the required

transformation property.
Since deg(v) = 1, the stated homogeneity of the �i,r is equivalent to

Ad(ζ )(B ′i (v)) = B ′i (ζ 2v) where Ad(ζ ) denotes the action of ζ ∈ C
× on

Yh̄(g)[[v]] corresponding to the N-grading. This in turn follows from the fact that
Ad(ζ )(h̄−1 B j (v)) = B j (ζ

2v) and Ad(ζ )Q(v) = Q(ζ 2v). ��
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Using the generators �i,r , the proof of the existence part of Proposition 5.2 in
higher rank follows the same argument as the one used for proving the sufficiency
of the cross-derivative condition (here the existence of a primitive for any i ∈ I is
guaranteed by the rank 1 case).

5.9 Uniqueness of ξ

Let ζ ∈̂Y 0× be an element such that r+i (u) = ζ · λ+i (u)(ζ )−1 for each i ∈ I. Then

λ+i (u)(ζ ξ
−1) = λ+i (u)(ζ )λ

+
i (u)(ξ)

−1

= r+i (u)
−1ζr+i (u)ξ

−1

= ζ ξ−1

By Proposition 2.10 (6), we get that λ±i (u)(ζ ξ−1) = ζ ξ−1 for each i ∈ I. By definition
of the operators λ±i (u), this implies that the coefficients of ζ ξ−1 lie in the centre of
Yh̄(g), which is trivial. This completes the proof of the last assertion of Proposition 5.2.

5.10 Torus action

The adjoint action of h on Yh̄(g) exponentiates to one of the algebraic torus H =
HomZ(Q,C×) where Q ⊂ h∗ is the root lattice. This action preserves homomor-
phisms of geometric type and acts on the corresponding formal power series by
ζ · {g±i (u)} = {ζ±1

i g±i (u)} where H � ζ → ζi = ζ(αi ) is the i th coordinate function
on H .

5.11 Uniqueness of homomorphisms of geometric type

Theorem Let �,�′ : Uh̄(Lg) → Ŷh̄(g) be two homomorphisms of geometric type.
Then, there exists ζ ∈ H and ξ ∈ 1+̂Y 0+ such that

�′ = Ad(ξ) ◦ (ζ ·�)

Moreover, ζ is unique and ξ is unique up to multiplication by c ∈ C[[h̄]]×.

Proof Let {g±i (u)}, {h±i (u)} ⊂ Ŷ 0[[u]] be elements of G corresponding to � and �′
respectively. By Lemma 3.7, we may use the action of H to assume that g±i (u) = h±i (u)
mod Ŷ 0[u]+. By Lemma 5.1, the elements r±i (u) = h±i (u) · g±i (u)−1 ∈ 1+ Ŷ 0[u]+
satisfy conditions (A0)–(C±0 ). By Proposition 5.2, we may find an element ξ ∈ 1+̂Y 0+
such that r+i (u) = ξ · λ+i (u)(ξ−1). It follows that for any i ∈ I

�′(Ei,0) = h+i (σ
+
i )x

+
i,0

= r+i (σ
+
i )g

+
i (σ

+
i )x

+
i,0
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= ξλ+i (σ
+
i )(ξ

−1)g+i (σ
+
i )x

+
i,0

= ξg+i (σ
+
i )x

+
i,0ξ

−1

Moreover, for any r ∈ Z,

�′(Ei,r ) = erσ+i �′(Ei,0) = erσ+i ξ�(Ei,0)ξ
−1 = ξ�(Ei,r )ξ

−1

By (B0), r−i (u) = λ−i (u)(r
+
i (u)

−1) = ξλ−i (u)(ξ−1) and it follows similarly that
�′(Fi,r ) = ξ�(Fi,r )ξ

−1 for any i ∈ I and r ∈ Z. Since � and �′ coincide on U 0

and Ad(ξ)(η) = η for any η ∈ Y 0 it follows that �′ = Ad(ξ) ◦�. The last assertion
of Proposition 5.2 implies the uniqueness of ξ up to multiplication by an element of
C[[h̄]]×. ��

6 Isomorphisms of geometric type

We prove in this section that any homomorphism of geometric type � : Uh̄(Lg) →
Ŷh̄(g) extends to an isomorphism of completed algebras and induces Drinfeld’s degen-
eration of Uh̄(Lg) to Yh̄(g).

6.1 Classical limit

The specialisations of the quantum loop algebra Uh̄(Lg) and Yangian Yh̄(g) at h̄ = 0
are the enveloping algebras U (g[z, z−1]) and U (g[s]) respectively. Specifically, if
{ei , fi , hi }i∈I are the generators of g given in Sect. 2.1, the assignments

ei ⊗ zk → Ei,k, fi ⊗ zk → Fi,k, hi ⊗ zr → Hi,r

and

ei ⊗ sr → 1√
di

x+i,r , fi ⊗ sr → 1√
di

x−i,r , hi ⊗ sr → 1

di
ξi,r

extend respectively to isomorphisms

U (g[z, z−1]) ∼→ Uh̄(Lg)/h̄Uh̄(Lg) and U (g[s]) ∼→ Yh̄(g)/h̄Yh̄(g)

Proposition Let � : Uh̄(Lg)→ Ŷh̄(g) be the homomorphism given by Theorem 4.7.
Then, the specialisation of � at h̄ = 0 is the homomorphism

exp∗ : U (g[z, z−1]) −→ U (g[[s]]) ⊂ Û (g[s])

given on g[z, z−1] by exp∗(X ⊗ zk) = X ⊗ eks .
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Proof Since �(Hi,0) = d−1
i ti,0 and, for r 	= 0,

�(Hi,r ) = h̄

qi − q−1
i

∑

k≥0

ti,k
rk

k!

setting h̄ = 0 yields �|h̄=0 (hi ⊗ z0) = hi ⊗ s0, and

�|h̄=0 (hi ⊗ zr ) = 1

di

∑

k≥0

di hi ⊗ skrk

k! = hi ⊗ ers

Further, since g+i (u) = 1√
di

mod h̄ by (4.14), we get

�|h̄=0 (ei ⊗ zr ) = 1√
di

erσ+i
√

di ei ⊗ s0 =
∑

k≥0

ei ⊗ skrk

k! = ei ⊗ ers

where we used the fact that, in the classical limit, the operator σ+i corresponds to
multiplication by s. Similarly, �|h̄=0 ( fi ⊗ zr ) = fi ⊗ ers . ��

6.2

Let J ⊂ Uh̄ Lg be the kernel of the composition

Uh̄ Lg
h̄→0−−−→ U (Lg)

z→1−−→ Ug

and let

Ûh̄(Lg) = lim←−Uh̄(Lg)/J n

be the completion of Uh̄(Lg) with respect to the ideal J .

Theorem Let � : Uh̄(Lg)→ Ŷh̄g be a homomorphism of geometric type. Then,

(1) � maps J to the ideal Ŷh̄(g)+ =
∏

n≥1 Yh̄(g)n.
(2) The corresponding homomorphism

̂� : Ûh̄(Lg)→ Ŷh̄(g)

is an isomorphism.

Proof (1) Note first that J is generated by h̄Uh̄(Lg) and the elements {Hi,r −
Hi,s, Ei,r − Ei,s, Fi,r − Fi,s}i∈I,r,s∈Z since its image in U (g[z, z−1]) is generated
by the classes of these elements. Note next that, for r, s 	= 0



Yangians and quantum loop algebras 307

�(Hi,r − Hi,s) = h̄

qi − q−1
i

∑

k≥1

rk − sk

k! ti,k

while

�(Hi,r − Hi,0) = h̄

qi − q−1
i

∑

k≥1

rk

k! ti,k +
(

h̄

qi − q−1
i

− d−1
i

)

ti,0

which lies in
∏

n≥1 Yh̄(g)n since h̄/(qi − q−1
i ) = d−1

i mod h̄. Finally, for r, s ∈
Z,

�(Ei,r − Ei,s) = (erσ+i − esσ+i )g+i (σ
+
i )ei,0 ∈ J

and similarly �(Fi,r − Fi,s) ∈ J .
(2) By Theorem 5.11, it suffices to prove this for the explicit homomorphism given

by Theorem 4.7. The result then follows Proposition 6.3 below and the fact
that, by Proposition 6.1, the specialisation of ̂� at h̄ = 0 is an isomorphism

̂U (g[z, z−1])→ Û (g[s]). ��

6.3

Let J ⊂ U (g[z, z−1]) be the kernel of evaluation at z = 1 and Û (Lg) the completion
of U (Lg) with respect to J .

Proposition (1) Ûh̄(Lg) is a flat deformation of ̂U (g[z, z−1]).
(2) Ŷh̄(g) is a flat deformation of Û (g[s]) over C[[h̄]].
Proof (1) Set, for brevity U = Uh̄(Lg) and U = U (g[z, z−1]). We claim that ̂U is a
flat deformation of ̂U/h̄̂U , and that ̂U/h̄̂UconĝU .

To prove the first assertion it suffices to show, by [21, Prop XVI.2.4], that ̂U is a
separated, complete and torsion-free C[[h̄]]-module. To show that it is separated, note
that h̄ ∈ J , so that h̄k

̂U ⊂ lim←−
n>k

J k/J n and

⋂

k≥0

h̄k
̂U = {0}

To show completeness, note that

̂U/h̄k
̂U = lim←−

n
(U/J n)/(h̄kU/h̄kU ∩ J n) = lim←−

n

{U/J n if n ≤ k
U/h̄kU + J n if n > k

from which it readily follows that the map

̂U −→ lim←−
k

̂U/h̄k
̂U
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is surjective. Finally, to prove that ̂U is torsion-free, note that the kernel of multiplica-
tion by h̄ on U/J n is h̄−1(h̄U ∩ J n)/J n . We claim that h̄U ∩ J n = h̄J n−1, which
implies that the kernel of h̄ on ̂U is limn J n−1/J n = {0}. To prove the claim, use the
flatness of U to identify it with the C[[h̄]]-module U [[h̄]], so that J = J ⊕ h̄U [[h̄]].
Let a1, . . . , an ∈ J and write ai = a0

i + h̄ai , where a0
i ∈ J and ai ∈ U [[h̄]]. Then

a1 . . . an = a0
1a2 . . . an mod h̄J n−1 = · · · = a0

1 . . . a
0
n mod h̄J n−1

from which the claim follows.
The fact that ̂U/h̄̂U ∼= ̂U follows by taking limits in the sequence

0 → h̄
(

U/J n−1
)

→ U/J n → U/J n → 0

The latter is exact since, under the natural surjection U → U , the ideal J n is mapped
to J n with kernel h̄U ∩ J n = h̄J n−1.

(2) Since Ŷh̄(g) is the completion of Yh̄(g) with respect to the ideal Yh̄(g)+ of ele-
ments of positive degree, it follows as in (1) that it is a separated and complete C[[h̄]]-
module. The lack of torsion of Yh̄(g) implies that h̄Yh̄(g)∩ Yh̄(g)

n+ = h̄Yh̄(g)
n−1+ and

therefore that Ŷh̄(g) is torsion-free. Thus, Ŷh̄(g) is a flat deformation of

Ŷh̄(g)/h̄Ŷh̄(g) ∼= ̂Yh̄(g)/h̄Yh̄(g) ∼= Û (g[s])

as claimed. ��

6.4 Drinfeld’s degeneration

Consider the descending filtration

Uh̄(Lg) = J 0 ⊃ J ⊃ J 2 ⊃ · · · (6.1)

defined by the powers of J and let grJ (Uh̄(Lg)) =⊕

n≥0 J n/J n+1 be its associated
graded.

Theorem ([10,17]) Let {d±i }i∈I ⊂ C
× be such that d+i d−i = di . Then, the follow-

ing assignment extends uniquely to an isomorphism of graded algebras Yh̄(g)
∼→

grJ (Uh̄(Lg))

ξi,0 �−→ di Hi,0 ∈ Uh̄(Lg)/J
x+i,0 �−→ d+i Ei,0 ∈ Uh̄(Lg)/J , x−i,0 �−→ d−i Fi,0 ∈ Uh̄(Lg)/J
x+i,1 �−→ d+i (Ei,1 − Ei,0) ∈ J /J 2, x−i,1 �−→ d−i (Fi,1 − Fi,0) ∈ J /J 2

Remark The fact that Uh̄(Lg) degenerates to Yh̄(g) is stated, without proof, in [10, §6].
The formulae above and the proof that they define an isomorphism Yh̄(g) ∼= grJ (Uh̄g)
are given in [17].
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6.5 Relation to Drinfeld’s degeneration

By Theorem 6.2, a homomorphism of geometric type � induces a homomorphism

gr(�) : grJ (Uh̄(Lg)) −→ Yh̄(g) = gr
Ŷh̄(g)+Ŷh̄(g)

Let {g±i (v)} ⊂ Ŷ 0[v]× be the elements defining �. By Lemma 3.7,

g±i (v) =
1

d±i
mod Ŷ 0[v]+ (6.2)

for some d±i ∈ C
× such that d+i d−i = di .

Proposition gr(�) is the inverse of the degeneration isomorphism ı : Yh̄(g)
∼→

Uh̄(Lg) given by Theorem 6.4.

Proof It suffices to verify the claim on the generators {ξi,0, x±i,0, x±i,1}i∈I of Yh̄(g). Now,

gr(�) ◦ ı(ξi,0) = gr(�)(di Hi,0) = ξi,0

and

gr(�) ◦ ı(x+i,0) = d+i �(Ei,0) mod Ŷh̄(g)+
= d+i g+i (σ

+
i )x

+
i,0 mod Ŷh̄(g)+

= x+i,0

by (6.2). Moreover,

gr(�) ◦ ı(x+i,1) = d+i �(Ei,1 − Ei,0) mod Ŷh̄(g)≥2

= d+i (e
σ+i − 1)g+i (σ

+
i )x

+
i,0 mod Ŷh̄(g)≥2

= x+i,1

And similarly gr(�) ◦ ı(x−i,r ) = x−i,r for r = 0, 1. ��

7 Geometric solution for gln

In this section, we construct a homomorphism of geometric type for gln and show
that it intertwines the geometric realisations of the corresponding loop algebra and
Yangian constructed by Ginzburg–Vasserot [15,34].
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7.1 The quantum loop algebra [8]

Throughout this section, we fix n ≥ 2 and mostly follow the notation of [34]. Set
I = {1, . . . , n−1} and J = {1, . . . , n}. Then, Uh̄(Lgln) is topologically generated over
C[[h̄]] by elements {Ei,r , Fi,r , D j,r }i∈I, j∈J,r∈Z. To describe the relations, introduce
the formal power series

Ei (z) =
∑

r∈Z

Ei,r z−r Fi (z) =
∑

r∈Z

Fi,r z−r

and

�±j (z) =
∑

s≥0

�±j,±s z∓s = exp

(

± h̄ D j,0

2

)

exp

⎛

⎝±(q − q−1)
∑

s≥1

D j,±s z∓s

⎞

⎠

The relations are

(QL1-gl) For any j, j ′ ∈ J and r, s ∈ Z,

[D j,r , D j ′,s] = 0

(QL2-gl) For any i ∈ I and j ∈ J,

�±j (z)Ei (w)�
±
j (z)

−1 = ϑc ji (q
c ji z/w)Ei (w)

�±j (z)Fi (w)�
±
j (z)

−1 = ϑc ji (q
c ji z/w)−1 Fi (w)

where c ji = −δ j i + δ j i+1, ϑm(ζ ) = qmζ−1
ζ−qm , and the right-hand side is

expanded in powers of z∓1.2

(QL3-gl) For any i, i ′ ∈ I,

Ei (z)Ei ′(w) = ϑaii ′ (q
i−i ′ z/w)Ei ′(w)Ei (z)

Fi (z)Fi ′(w) = ϑaii ′ (q
i−i ′ z/w)−1 Fi ′(w)Fi (z)

where aii ′ = 2δi i ′ − δ|i−i ′|,1 are the entries of the Cartan matrix of sln and
the equalities are understood as holding after both side have been multiplied
by the denominator of the function ϑm .

(QL4-gl) For any i, i ′ ∈ I,

(q − q−1)[Ei (z), Fi ′(w)] = δi,i ′δ(z/w)

(

�+i+1(z)

�+i (z)
− �−i+1(z)

�−i (z)

)

where δ(ζ ) =∑

r∈Z ζ
r is the formal delta function.

2 note that the expansions in z±1 are related by the symmetry ϑm (ζ
−1) = ϑ−m (ζ ).
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(QL5-gl) For any i, i ′ ∈ I such that |i − i ′| = 1,

Ei (z1)Ei (z2)Ei ′(w)− (q + q−1)Ei (z1)Ei ′(w)Ei (z2)+ Ei ′(w)Ei (z1)Ei (z2)

+(z1 ↔ z2) = 0

Fi (z1)Fi (z2)Fi ′(w)− (q + q−1)Fi (z1)Fi ′(w)Fi (z2)+ Fi ′(w)Fi (z1)Fi (z2)

+(z1 ↔ z2) = 0

For any i, i ′ ∈ I such that |i − i ′| ≥ 2,

Ei (z)Ei ′(w) = Ei ′(w)Ei (z)

Fi (z)Fi ′(w) = Fi ′(w)Fi (z)

In terms of the generators {Ei,r , Fi,r , D j,r }, the relations (QL1-gl)–(QL4-gl) read

[D j,0, Ei,k] = c ji Ei,k [D j,r , Ei,k] = q−c ji r
[c ji r ]

r
Ei,k+r

[D j,0, Fi,k] = −c ji Fi,k [D j,r , Fi,k] = −q−c ji r
[c ji r ]

r
Fi,k+r

qi Ei,k+1 Ei ′,l − qaii ′+i ′ Ei,k Ei ′,l+1 = qaii ′+i Ei ′,l Ei,k+1 − qi ′ Ei ′,l+1 Ei,k

qaii ′+i Fi,k+1 Fi ′,l − qi ′ Fi,k Fi ′,l+1 = qi Fi ′,l Fi,k+1 − qai j+i ′ Fi ′,l+1 Fi,k

[Ei,k, Fi ′,l ] = δi i ′
P+i,k+l − P−i,k+l

q − q−1

where P±i (z) =
∑

s≥0 P±i,±s z∓s = �±i+1(z)/�
±
i (z)

We denote by U 0 ⊂ Uh̄(Lgln) the commutative subalgebra generated by the ele-
ments D j,r .

7.2 The Yangian Yh̄(gln)

The following definition can be found in [25, §3.1]. Yh̄(gln) is the algebra over C[h̄]
generated by elements {ei,r , fi,r , θ j,r }i∈I, j∈J,r∈N subject to the following relations.3

(Y1-gl) For any j, j ′ ∈ J and r, s ∈ N,

[θ j,r , θ j ′,s] = 0

(Y2-gl) For any j ∈ J and i ∈ I,

[

θ j,0, ei,s
] = c ji ei,s

[

θ j,0, fi,s
] = −c ji fi,s

3 our conventions are adapted to [15,34] They differ from those of [25] by the permutation ei,r ↔ fi,r
and the relabelling θi,r ↔ hi,r .
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[

θ j,r+1, ei,s
]− [

θ j,r , ei,s+1
] = h̄c ji ei,sθ j,r

[

θ j,r+1, fi,s
]− [

θ j,r , fi,s+1
] = −h̄c jiθ j,r fi,s

where c ji = −(δ j i − δ j,i+1).
(Y3-gl) For any i ∈ I,

[

ei,r+1, ei,s
]− [

ei,r , ei,s+1
] = h̄(ei,r ei,s + ei,sei,r )

[

fi,r+1, fi,s
]− [

fi,r , fi,s+1
] = −h̄( fi,r fi,s + fi,s fi,r )

For any i ∈ I \ {n − 1} and r, s ∈ N,

[

ei,r+1, ei+1,s
]− [

ei,r , ei+1,s+1
] = −h̄ei+1,sei,r

[

fi,r+1, fi+1,s
]− [

fi,r , fi+1,s+1
] = h̄ fi,r fi+1,s

(Y4-gl) For any i, i ′ ∈ I,

[ei,r , fi ′,s] = δi,i ′ pi,r+s

where pi (v) = 1+ h̄
∑

r≥0 prv
−r−1 = θi+1(v)θi (v)

−1.
(Y5-gl) For any i, i ′ ∈ I such that |i − i ′| = 1, and r1, r2, s ∈ N,

[

ei,r1 ,
[

ei,r2 , ei ′,s
]]+ [

ei,r2 ,
[

ei,r1 , ei ′,s
]] = 0

[

fi,r1 ,
[

fi,r2 , fi ′,s
]]+ [

fi,r2 ,
[

fi,r1 , fi ′,s
]] = 0

For i, i ′ ∈ I such that |i − i ′| > 1, and r, s ∈ N

[

ei,r , ei ′,s
] = 0 = [

fi,r , fi ′,s
]

The Yangian Yh̄(gln) is N-graded by deg(ei,r ) = deg( fi,r ) = deg(θ j,r ) = r and
deg(h̄) = 1.

7.3 Shift homomorphisms

Let Y 0 ⊂ Yh̄(gln) be the commutative subalgebra generated by the elements {θ j,r }
and Y+,Y− ⊂ Yh̄(gln) the subalgebras generated by Y 0 and the elements {ei,r } (resp.
{ fi,r }), i ∈ I, r ∈ N.

For any i ∈ I, define, as in Sect. 2.6, a Y 0-linear homomorphism σ±i of Y± by
ei ′,r → ei ′,r+δi i ′ (resp. fi ′,r → fi ′,r+δi i ′ ). The definition of σ±i relies on the PBW
theorem for Yh̄(gln), which is proved in [27].
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7.4 Alternative generators for Y 0

Define an alternative family of generators {d j,r } j∈J,r∈N of Y 0 by

d j (u) = h̄
∑

r≥0

d j,r u−r−1 = log(θ j (u))

Set B j (v) = h̄
∑

r≥0

d j,r
vr

r ! ∈ Y 0[[v]]. The following commutation relations are proved

exactly as their counterparts in Lemma 2.9.

Lemma The following holds for any j ∈ J and i ∈ I,

[

B j (v), ei,s
] = 1− e−c ji h̄v

v
eσ

+
i v ei,s

[

B j (v), fi,s
] = −1− e−c ji h̄v

v
eσ

−
i v fi,s

7.5 The operators λ±i (v)

The following result is analogous to and proved in the same way as, Proposition 2.10.

Proposition There are operators {λ±i;s}i∈I,s∈N on Y 0 such that the following holds.

(1) For any ξ ∈ Y 0,

ei,r ξ =
∑

s≥0

λ+i;s(ξ)ei,r+s

fi,r ξ =
∑

s≥0

λ−i;s(ξ) fi,r+s

(2) The operator λ±i (v) : Y 0 → Y 0[v] given by

λ±i (v)(ξ) =
∑

s∈N

λ±i;s(ξ)v
s

is an algebra homomorphisms of degree 0 with respect to the N-grading on Y 0[v]
extending that on Y 0 by deg(v) = 1.

(3) The operators λεi (v) and λε
′

i ′ (v
′) commute for any i, i ′ ∈ I and ε, ε′ ∈ {±}.

Moreover,

λ+i (v)λ
−
i (v) = I d
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(4) For any i ∈ I and j ∈ J,

(λ±i (v1)− 1)B j (v2) = ±e−c ji h̄v2 − 1

v2
ev1v2 (7.1)

7.6

Let {g±i (u)}i∈I be a collection of elements in Ŷ 0[u]. Define, as in Sect. 3.1, an assign-

ment � : {Ei,r , Fi,r , D j,r } → Ŷh̄(gln) by

�(D j,0) = θ j,0

�(D j,r ) = B j (r)

q − q−1 for r 	= 0

�(Ei,k) = ekσ+i g+i (σ
+
i ) ei,0

�(Fi,k) = ekσ−i g−i (σ
−
i ) fi,0

and denote the restriction of � to U 0 by �0. For any i ∈ I, set

ξi (u) = 1+ h̄
∑

r≥0

ξi,r u−r−1 = θi+1(u)θi (u)
−1 ∈ Y 0[[u−1]]

P±i (z) =
∑

s≥0

P±i,±s z∓s = �±i+1(z)�
±
i (z)

−1 ∈ U 0[[z∓1]]

Theorem The assignment � extends to an algebra homomorphism if and only if the
following conditions hold.

(A) For any i, i ′ ∈ I,

g+i (u)λ
+
i (u)(g

−
i ′ (v)) = g−i ′ (v)λ

−
i ′ (v)(g

+
i (u))

(B) For any i ∈ I and k ∈ Z,

eku g+i (v)λ
+
i (v)(g

−
i (v))|vm=ξi,m = �0

(

P+i,k − P−i,k
q − q−1

)

(C0) For any i, i ′ ∈ I such that |i − i ′| > 1,

g±i (u)λ
±
i (u)(g

±
i ′ (v)) = g±i ′ (v)λ

±
i ′ (v)(g

±
i (u))

(C1) For any i ∈ I

g±i (u)λ
±
i (u)(g

±
i (v))

eu − ev±h̄

u − v ∓ h̄
= g±i (v)λ

±
i (v)(g

±
i (u))

ev − eu±h̄

v − u ∓ h̄
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(C2) For any i ∈ I\{n − 1},

g±i (u)λ
±
i (u)(g

±
i+1(v))

(

eu−ev

u−v
)±1

=g±i+1(v)λ
±
i+1(v)(g

±
i (u))

(

eu−h̄/2−ev+h̄/2

u−v−h̄

)±1

The proof of Theorem 7.6 is given in Sects. 7.7–7.11. It follows the same lines as
that of Theorem 3.4, with the exception of the q-Serre relations (QL5-gl) which are
proved directly.

7.7

A proof similar to that of Lemmas 3.5 and 3.6 yields the following

(1) � is compatible with the relation (QL4-gl) if, and only if (A) and (B) hold.
(2) � is compatible with the relation (QL3-gl) if, and only if (C0)–(C2) hold.

By virtue of condition (C0), � is compatible with the q-Serre relations (QL5-gl)
whenever |i − i ′| > 1. We therefore need to only consider the case |i − i ′| = 1. We
shall in fact restrict to i ′ = i + 1 since the case i ′ = i − 1 is dealt with similarly.

7.8

The essential ingredient is the following analogue of Lemma 8.4. We leave it to the
reader to carry out the construction of the auxiliary algebra Y (see Sect. 8.2), the
operators σ i,(1), σ i,(2) and σ i ′ on Y 2αi+αi ′ (Sect. 8.3) and the map pii ′ : Y 2αi+αi ′ →
Yh̄(gln).

Lemma The kernel of pii ′ is the C[h̄]-linear span of the following elements

(1) For any A(u1, u2, v) ∈ Y
0[u1, u2, v]

A(σ i,(1), σ i,(2), σ i ′)
(

(σ i,(2) − σ i ′)e
2
i,0ei ′,0 − (σ i,(2) − σ i ′ − h̄)ei,0ei ′,0ei,0

)

A(σ i,(1), σ i,(2), σ i ′)
(

(σ i,(1) − σ i ′)ei,0ei ′,0ei,0 − (σ i,(1) − σ i ′ − h̄)ei ′,0e2
i,0

)

(2) For any B(u1, u2, v) = B(u2, u1, v) ∈ Y
0[u1, u2, v]

B(σ i,(1), σ i,(2), σ i ′)(σ i,(1) − σ i,(2) − h̄)e2
i,0ei ′,0

B(σ i,(1), σ i,(2), σ i ′)(σ i,(1) − σ i,(2) − h̄)ei ′,0e2
i,0

(3) For any B(u1, u2, v) = B(u2, u1, v) ∈ Y
0[u1, u2, v]

B(σ i,(1), σ i,(2), σ i ′)
(

e2
i,0ei ′,0 − 2ei,0ei ′,0ei,0 + ei ′,0e2

i,0

)
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Corollary The kernel of pii ′ is stable under the action of A(σ i,(1), σ i,(2), σ i ′), for any

A(u1, u2, v) = A(u2, u1, v) ∈ Y
0[u1, u2, v].

Remark In the next sections, we use the following convention for notational conve-
nience: for each X ∈ Y 2αi+αi ′ and X = pii ′(X), we set

A(σi,1, σi,2, σi ′)(X) = pi,i ′
(

A(σ i,(1), σ i,(2), σ i ′)(X)
)

7.9

We shall only prove the q-Serre relations for the case of the E’s and consequently
drop the superscript+. We need to show that the following holds for any k1, k2, l ∈ Z

�(Ei,k1)�(Ei,k2)�(E j,l)− (q + q−1)�(Ei,k1)�(E j,l)�(Ei,k2)

+�(E j,l)�(Ei,k1)�(Ei,k2)+ (k1 ↔ k2) = 0

As in Sect. 8.5, an application of Corollary 7.8 shows that this reduces to showing that

�(Ei,0)
2�(E j,0)− (q + q−1)�(Ei,0)�(E j,0)�(Ei,0)+�(E j,0)�(Ei,0)

2 = 0

7.10

With Corollary 7.8 in mind, we seek to factor a common symmetric function out of
each of the above summands. This is achieved by the following result.

Lemma There exists H(u1, u2, v) ∈ Y
0[[u1, u2, v]] symmetric in u1 ↔ u2, such

that

�(Ei,0)
2�(Ei ′,0) = H(σi,1, σi,2, σi ′)P0(σi,1, σi,2, σi ′)ei,0ei,0ei ′,0

�(Ei,0)�(Ei ′,0)�(Ei,0) = H(σi,1, σi,2, σi ′)P1(σi,1, σi,2, σi ′)ei,0ei ′,0ei,0

�(Ei ′,0)�(Ei,0)
2 = H(σi,1, σi,2, σi ′)P2(σi,1, σi,2, σi ′)ei ′,0ei,0ei,0

where P0,P1,P2 ∈ C[[u1, u2, v]] are given in terms of the function

P(x, y) = ex − ey

x − y
∈ C[[x, y]]S2

by

P0 = P(u1 + h̄, u2)P(u1 − h̄/2, v + h̄/2)P(u2 − h̄/2, v + h̄/2)

P1 = P(u1 + h̄, u2)P(u1 − h̄/2, v + h̄/2)P(u2, v)

P2 = P(u1 + h̄, u2)P(u1, v)P(u2, v)
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Proof Define Gab(x, y) ∈ Y
0[[x, y]] by λa(x)(gb(y)) = gb(y)Gab(x, y). Then, in

obvious notation,

�(Ea,0)�(Eb,0)�(Ec,0)

= ga(σa)ea,0gb(σb)eb,0gc(σc)ec,0

= ga(σa)λa(σa)(gb(σb))λa(σa) ◦ λb(σb)(gc(σc))ea,0eb,0ec,0

= ga(σa)gb(σb)gc(σc)Gab(σa, σb)Gac(σa, σc)λa(σa)(Gbc(σb, σc))ea,0eb,0ec,0

We record for later use the symmetry in the interchange a ↔ b of the term

Gac(σa, σc)λa(σa)(Gbc(σb, σc)) = λa(σa) ◦ λb(σb)(gc(σc))/gc(σc)

= Gbc(σb, σc)λb(σb)(Gac(σa, σc)) (7.2)

where the second equality follows from the commutativity of λa(σa) and λb(σb).

Set now F = gi (σi,1)gi (σi,2)gi ′(σi ′) ∈ Y
0[[σi,1, σi,2, σi ′ ]]S2 . Then, the above

yields

�(Ei,0)
2�(Ei ′,0) = F Gii (σi,1, σi,2)Gii ′(σi,1, σi ′)λi (σi,1)(Gii ′(σi,2, σi ′))e

2
i,0ei ′,0

�(Ei,0)�(Ei ′,0)�(Ei,0)=F Gii ′(σi,1, σi ′)Gii (σi,1, σi,2)λi (σi,1)(Gi ′i (σi ′ , σi,2))

ei,0ei ′,0ei,0

�(Ei ′,0)�(Ei,0)
2 = F Gi ′i (σi ′ , σi,1)Gi ′i (σi ′ , σi,2)λi ′(σi ′)(Gii (σi,1, σi,2))ei ′,0e2

i,0

We claim that Gii (u1, u2) = Gii (u1, u2)P(u1 + h̄, u2), where G is symmetric in
u1, u2. Indeed, by condition (C1)

Gii (u1, u2)P(u1, u2 + h̄) = Gii (u2, u1)P(u2, u1 + h̄)

whence the result with Gii (u1, u2) = Gii (u1, u2)/P(u1 + h̄, u2). It follows that

�(Ei,0)
2�(Ei ′,0) = H(σi,1, σi,2, σi ′)P(σi,1 + h̄, σi,2)e

2
i,0ei ′,0

where

H(u1, u2, v) = gi (u1)gi (u2)gi ′(v)Gii (u1, u2)Gii ′(u1, v)λi (u1)(Gii ′(u2, v))

∈ Y 0[[u1, u2, v]]

is symmetric in u1, u2 by (7.2).
Next, assuming that i ′ = i + 1, condition (C2) yields

Gii ′(u, v)P(u, v) = Gi ′i (v, u)P(u − h̄/2, v + h̄/2)
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so that

�(Ei,0)�(Ei ′,0)�(Ei,0)

= H(σi,1, σi,2, σi ′)P(σi,1 + h̄, σi,2)
P(σi,2, σi ′)

P(σi,2 − h̄/2, σi ′ + h̄/2)
ei,0ei ′,0ei,0

Finally, using (7.2) again, with a = i, b = i ′, c = i and the previous calculation
yields

�(Ei ′,0)�(Ei,0)
2 = H(σi,1, σi,2, σi ′)P(σi,1 + h̄, σi,2)

P(σi,1, σi ′)

P(σi,1 − h̄/2, σi ′ + h̄/2)

P(σi,2, σi ′)

P(σi,2 − h̄/2, σi ′ + h̄/2)
ei ′,0e2

i,0

as claimed. ��

7.11

By Lemma 7.10 and Corollary 7.8, we are reduced to proving the following

Sq = P0(σi,1, σi,2, σi ′)e
2
i,0ei ′,0 − (q + q−1)P1(σi,1, σi,2, σi ′)ei,0ei ′,0ei,0

+ P2(σi,1, σi,2, σi ′)ei ′,0e2
i,0 = 0

Step 1. We first observe that

P(u1 + h̄, u2)− 1+ eh̄

2
P(u1, u2) ∈ (u1 − u2 − h̄)C[[h̄, u1, u2]]S2

This allows us to use (2) of Lemma 7.8 to obtain

Sq = P ′
0(σi,1, σi,2, σi ′)e

2
i,0ei ′,0−2P ′

1(σi,1, σi,2, σi ′)ei,0ei ′,0ei,0

+ P ′
2(σi,1, σi,2, σi ′)ei ′,0e2

i,0

where

P ′
0 = eh̄/2 P(u1, u2)P(u1 − h̄/2, v + h̄/2)P(u2 − h̄/2, v + h̄/2)

P ′
1 = P(u1 + h̄, u2)P(u1 − h̄/2, v + h̄/2)P(u2, v) = P1

P ′
2 = eh̄/2 P(u1, u2)P(u1, v)P(u2, v)

Step 2. We use next (3) of Lemma 7.8 with B = P ′
2 to get

Sq = (P ′
0 − P ′

2)e
2
i,0ei ′,0 − 2(P ′

1 − P ′
2)ei,0ei ′,0ei,0
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One can easily check that P ′
1 −P ′

2 is divisible by u2 − v− h̄, which together with (1)

of Lemma 7.8, with A = 2
P ′

1 − P ′
2

u2 − v − h̄
, yields

Sq =
(

P ′
0 − P ′

2 − 2
P ′

1 − P ′
2

u2 − v − h̄
(u2 − v)

)

e2
i,0ei ′,0

Step 3. Finally we can directly verify that the function

F = P ′
0 − P ′

2 − 2
P ′

1 − P ′
2

u2 − v − h̄
(u2 − v)

is divisible by u1−u2− h̄. Moreover, the quotient
F

u1 − u2 − h̄
is symmetric in u1, u2.

This allows us to use (2) of Lemma 7.8 to conclude that Sq = 0.

7.12 The variety F

Fix integers 1 ≤ n ≤ d ∈ N, let

F =
{

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = C
d
}

be the variety of n-step flags in C
d , and T ∗F its cotangent bundle. We describe below

the GLd(C)×C
×-equivariant K -theory and cohomology of T ∗F following [15,34].

The connected components of F are parametrised by the set P of partitions of [1, d]
into n intervals, i.e.,

P = {d = (0 = d0 ≤ d1 ≤ · · · ≤ dn = d)}

where d ∈ P labels the component Fd consisting of flags such that dim Vk = dk . The
symmetric group Sd acts on the rings

S = C[q±1, X±1
1 , . . . , X±1

d ]
R = C[h̄, x1, . . . , xd ]

by permuting the variables X1, . . . , Xd and x1, . . . , xd and fixing q, h̄ respectively.
For any d ∈ P , denote by

S(d) = Sd1−d0 × · · · ×Sdn−dn−1 ⊂ Sd
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the subgroup preserving the corresponding partition. Then, the following holds

K GLd (C)×C×(T ∗F) ∼=
⊕

d∈P
SS(d)

HGLd (C)×C×(T
∗F) ∼=

⊕

d∈P
RS(d)

where K C×(pt) = C[q, q−1] and HC×(pt) = C[h̄].

7.13

For any partition d ∈ P and i ∈ I, set

d±i = (0 = d0 ≤ · · · ≤ di−1 ≤ di ± 1 ≤ di+1 ≤ · · · ≤ dn = d)

if the right-hand side makes sense as a partition.
If d,d′ ∈ P are two partitions, and P is one of the rings R, S, we denote by σ(d,d′)

the symmetrisation operator

σ(d,d′) : PS(d)∩S(d′) → PS(d′), σ (d,d′)(p) =
∑

τ∈S(d′)/S(d)∩S(d′)
τ (p)

7.14 Uh̄(Lgln)-action [15,34]

Consider the following operators acting on

S(P) =
⊕

d∈P
SS(d)

(1) For any j ∈ J, �U (�
±
j (z)) acts on SS(d) as multiplication by

d j−1
∏

k=1

qz − q−1 Xk

z − Xk

d
∏

k=d j+1

z − Xk

q−1z − q Xk
∈ SS(d)[[z∓1]]

(2) For any i ∈ I, the operators

�U (Ei (z)) : SS(d) → SS(d+i )[[z, z−1]]
�U (Fi (z)) : SS(d) → SS(d−i )[[z, z−1]]
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act by 0 if d±i is not defined, and by

�U (Ei (z))p = σ(d,d+i )

⎛

⎝δ(Xdi+1/z)
∏

k∈Ii

q Xdi+1 − q−1 Xk

Xdi+1 − Xk
p

⎞

⎠

�U (Fi (z))p = σ(d,d−i )

⎛

⎝δ(Xdi /z)
∏

k∈Ii+1

q−1 Xdi − q Xk

Xdi − Xk
p

⎞

⎠

otherwise, where Ii is the interval [di−1 + 1, . . . , di ].
The following result is due to Ginzburg and Vasserot and is proved in [34, §2.2].

Theorem The assignment �U extends to an algebra homomorphism

�U : Uh̄(Lgln)→ EndC[q,q−1](S(P))

7.15 Yh̄(gln)-action

Consider the following operators acting on

R(P) =
⊕

d∈P
RS(d)

(1) For any j ∈ J, �Y (θ j (u)) acts on RS(d) as multiplication by

d j−1
∏

k=1

u − xk + h̄

u − xk

d
∏

k=d j+1

u − xk

u − xk − h̄
∈ RS(d)[[u−1]]

(2) For any i ∈ I,

�Y (ei (u)) : RS(d) → RS(d+i )[[u−1]]
�Y ( fi (u)) : RS(d) → RS(d−i )[[u−1]]

act as zero if d±i is not defined, and by

�Y (ei (u))p = h̄σ(d,d+i )

⎛

⎝

1

u − xdi+1

∏

k∈Ii

xdi+1 − xk + h̄

xdi+1 − xk
p

⎞

⎠

�Y ( fi (u))p = h̄σ(d,d−i )

⎛

⎝

1

u − xdi

∏

k∈Ii+1

xdi − xk − h̄

xdi − xk
p

⎞

⎠

otherwise.

The following result is proved in a similar way to Theorem 7.14
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Proposition The assignment �Y extends to an algebra homomorphism

�Y : Yh̄(gln)→ EndC[h̄](R(P))

Remark The above formulae are degenerations of those of the previous section
obtained by setting z = etu, q = et h̄/2, Xk = et xk and letting t → 0.

7.16

Lemma The homomorphism �Y maps the centre Z of Yh̄(gln) surjectively to
C[h̄, x1, . . . , xd ]Sd . In particular, there exists an element

�(u) = 1+ h̄
∑

r≥0

�r u−r−1 ∈ Z[[u−1]]

such that

�Y (�(u)) =
d
∏

k=1

u − xk − h̄

u − xk

Proof By [25, Cor. 1.11.8], Z is generated by the coefficients of the element

qdet (u) = θ1(u)θ2(u − h̄) · · · θn(u − (n − 1)h̄) ∈ Yh̄(gln)[[u−1]]
It readily follows from 7.15 that

�Y (qdet (u)) =
d
∏

k=1

u − xk

u − xk − (n − 1)h̄

By (2.7), L(v) = B(log(qdet (u))) ∈ Z[[v]] therefore satisfies

�Y (L(v)) =
d
∑

k=1

e(xk+(n−1)h̄)v − exkv

v
=
∑

r≥1

(

pr ({xk + (n − 1)h̄})− pr ({xk})
)vr−1

r !

which yields the surjectivity since the power sums pr (x1, . . . , xd) =∑

k xr
k generate

C[x1, . . . , xd ]Sd . ��

7.17

We will need the following

Lemma For any i ∈ I, there exists Td±i (v) =
∑

r≥0 Td±i,rvr ∈ Ŷ 0[v] such that

�Y
(

Td+i (v)
) =

∏

k∈Ii

v − xk

1− e−v+xk

1− e−v+xk−h̄

v − xk + h̄
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�Y
(

Td−i (v)
) =

∏

k∈Ii+1

v − xk

1− e−v+xk

1− e−v+xk+h̄

v − xk − h̄

The proof of this lemma is given in Sect. 7.20.

7.18 A compatible assignment

Let � : {Ei,0, Fi,0, D j,r }i∈I, j∈J,r∈Z → Ŷh̄(gln) be the assignment defined by

�(D j,0) = θ j,0

�(D j,r ) = B j (v)

q − q−1

∣

∣

∣

∣

v=r

�(Ei,0) =
∑

s≥0

ei,sTd+i,s q−�0−θi,0

�(Fi,0) =
∑

s≥0

fi,sTd−i,s q�0+θi+1,0

where �0 is given by Lemma 7.16. Extend � to the generators Ei,r , Fi,r , r ∈ Z by
defining, as in Sect. 3.3,

Td±,(r)i (v) =
∑

m≥0

Td±,(r)i,m vm = ervTd±i (v) ∈̂Y 0[[v]]

and setting

�(Ei,r ) =
∑

s≥0

ei,sTd+,(r)i,s q−�0−θi,0

�(Fi,r ) =
∑

s≥0

fi,sTd−,(r)i,s q�0+θi+1,0

7.19

Let R̂(P) be the completion with respect to the N-grading given by deg(xk) =
deg(h̄) = 1. Define a homomorphism ch : S(P) → R̂(P) mapping each SS(d)

to ̂RS(d) by

q �−→ eh̄/2 and Xk �−→ exk

Theorem The assignment�above intertwines the geometric realisations of Uh̄(Lgln)
and Yh̄(gln) on S(P) and R(P) respectively. In other words, the following holds for
any X ∈ {Ei,r , Fi,r , D j,r }i∈I, j∈J,r∈N and π ∈ S(P).

ch(X · π) = �(X) · ch(π)
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Proof Consider first the case X = D j,r , j ∈ J, r ∈ Z. By definition of �U and �Y ,
D j,0 = 2/h̄ log(� j,0) and θ j,0 act on SS(d) and RS(d) respectively as multiplication
by d − (d j − d j−1). Further, (2.7) yields

�Y (B j (v)) = 1

v

⎛

⎝(1− e−h̄v)

d j−1
∑

k=1

exkv + (eh̄v − 1)
d
∑

k=d j+1

exkv

⎞

⎠

Similarly, taking log in

�U

⎛

⎝exp

⎛

⎝(q − q−1)
∑

s≥1

D j,s z−s

⎞

⎠

⎞

⎠ =
d j−1
∏

k=1

z − q−2 Xk

z − Xk

d
∏

k=d j+1

z − Xk

z − q2 Xk

yields

�U ((q − q−1)D j,r ) = 1

r

⎛

⎝(1− q−2r )

d j−1
∑

k=1

Xr
j + (q2r − 1)

d
∑

k=d j+1

Xr
k

⎞

⎠

Thus, ch(�U (D j,r )π) = �Y
(

B j (r)π/(q − q−1)
)

for any π ∈ SS(d).
We turn next to X = Ei,0. Let π ∈ SS(d) and set p = ch(π) ∈ RS(d). Since �0

acts on RS(d) as multiplication by−d by Lemma 7.16, and θ j,0 acts as multiplication
by d − (d j − d j−1), we get

�(Ei,0)(p) =
∑

s≥0

ei,s

(

Td+i,s p
)

qd j−d j−1

= σ(d,d+i )

⎛

⎝

∑

s≥0

Td+i,s xs
di+1 p

∏

k∈Ii

xdi+1 − xk + h̄

xdi+1 − xk

⎞

⎠ qd j−d j−1

= σ(d,d+i )

⎛

⎝Td+i (xdi+1) p
∏

k∈Ii

xdi+1 − xk + h̄

xdi+1 − xk

⎞

⎠ qd j−d j−1

= σ(d,d+i )

⎛

⎝p
∏

k∈Ii

exdi+1 − exk−h̄

exdi+1 − exk

⎞

⎠ qd j−d j−1

= σ(d,d+i )

⎛

⎝pch
∏

k∈Ii

q Xdi+1 − q−1 Xk

Xdi+1 − Xk

⎞

⎠

= ch
(

Ei,0 π
)

The proof for the rest of the generators is identical. ��
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7.20 Proof of Lemma 7.17

Let �(u) be the formal series given in Lemma 7.16, and set

z(u) = h̄
∑

r≥0

zr u−r−1 = log(�(u))

For any j ∈ J, define y j (u) ∈ Y 0[[u−1]] by

y j (u) = z(u + ( j − 1)h̄)+ d j (u)+
j−1
∑

s=1

(

d j−s(u + sh̄)− d j−s(u + (s − 1)h̄)
)

(7.3)

A computation similar to the one given in Sect. 7.19 shows that, for any j ∈ J,

�Y
(

B(y j (u))
) = 1− eh̄v

v

∑

k∈I j

exkv (7.4)

Set now4

J (v) = log

(

v

1− e−v

)

∈ Q[[v]]

and, for any i ∈ I, define

td+i (v) = B(yi (−∂))J ′(v + h̄) (7.5)

td−i (v) = −B(yi+1(−∂))J ′(v) (7.6)

where ∂ = d/dv. We claim that Td±i (u) = exp(td±i (u)) satisfy the conditions of the
Lemma. By (7.4) we have

�Y
(

td+i (v)
) =

⎛

⎝

1− e−h̄∂

−∂
∑

k∈Ii

e−xk∂

⎞

⎠ ∂ J (v + h̄)

4 Note the difference between J (v) and the function G(v) used in Sect. 4.1 for constructing the solutions
for simple Lie algebras: J (v) = G(v)+ v

2 .
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Using e−p∂ f (v) = f (v − p), we get

�Y (td
+
i (v)) =

∑

k∈Ii

J (v − xk)− J (v − xk + h̄)

=
∑

k∈Ii

log

(

v − xk

1− e−v+xk

1− e−v+xk−h̄

v − xk + h̄

)

= log

⎛

⎝

∏

k∈Ii

v − xk

1− e−v+xk

1− e−v+xk+h̄

v − xk + h̄

⎞

⎠

The proof for the − case is same.

7.21 Standard form of �

We rewrite below the assignment� in a form in which Theorem 7.6 can be applied and
use this to prove that � extends to an algebra homomorphism Uh̄(Lgln)→ Ŷh̄(gln).

Lemma Let y j (v) be given by (7.3), and λ±i (u) the operators of Proposition 7.5.
Then,

(λ±i (u)− 1)B(y j (v)) = ±(δi, j − δ j,i+1)
eh̄v − 1

v
euv

The proof of this lemma essentially follows from Proposition 7.5.

Corollary For any i, i ′ ∈ I, we have

λ+i (u)(Td+i ′ (v))
Td+i ′ (u)

= Td+i ′ (v)
λ−i (u)(Td+i ′ (v))

=
(

v − u + h̄

1− e−v+u−h̄

1− e−v+u

v − u

)δi,i ′−δi,i ′−1

λ+i (u)(Td−i ′ (v))
Td−i ′ (u)

= Td−i ′ (v)
λ−i (u)(Td−i ′ (v))

=
(

v − u

1− e−v+u

1− e−v+u+h̄

v − u − h̄

)δi,i ′−δi,i ′+1

It follows that

�(Ei,k) = ekσ+i g+i (σ
+
i )ei,0

�(Fi,k) = ekσ−i g−i (σ
−
i ) fi,0

where

g+i (u) = q−�0−θi,0
h̄

q − q−1 Td+i (u)

g−i (u) = q�0+θi+1,0
h̄

q − q−1 Td−i (u) (7.7)
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7.22

We record the action of the operators λ±i ′ (u) on g±i (v) using Corollary 7.21

λ+i (u)(g
+
i (v)) = λ−i−1(u)(g

+
i (v)) = g+i (v)

v − u + h̄

ev+h̄/2 − eu−h̄/2

ev − eu

v − u
(7.8)

λ+i+1(u)(g
−
i (v)) = λ−i (u)(g

−
i (v)) = g−i (v)

v − u − h̄

ev−h̄/2 − eu+h̄/2

ev − eu

v − u
(7.9)

Using the fact that λ+i (u)λ
−
i (u) = id, we get four more equations from these. More-

over, λ±i ′ (u)(g
+
i (v)) = g+i (v) for i ′ 	= i, i − 1 and λ±i ′ (u)(g

−
i (v)) = g−i (v) for

i ′ 	= i, i + 1.

7.23

Theorem The series g±i (u) satisfy the conditions (A),(B),(C0)–(C2) of Theorem 7.6

and therefore give rise to an algebra homomorphism � : Uh̄(Lgln)→ Ŷh̄(gln).

7.24 Proof of (A)

We need to prove that for every i, i ′ ∈ I, we have

g+i (u)λ
+
i (u)(g

−
i ′ (v)) = g−i ′ (v)λ

−
i ′ (v)(g

+
i (u))

If i 	= i ′, i ′ + 1, both sides are equal to g+i (u)g
−
i ′ (v). For i = i ′, by (7.8)–(7.9), the

left- and right-hand sides are respectively equal to

v − u

ev − eu

ev−h̄/2 − eu+h̄/2

v − u − h̄
and

u − v
eu − ev

eu+h̄/2 − ev−h̄/2

u − v + h̄

The case i = i ′ + 1 follows in the same way.

7.25 Proof of (B)

Let i ∈ I. By (7.9),

g+i (u)λ
+
i (u)(g

−
i (u)) = g+i (u)g

−
i (u)

q − q−1

h̄

= qθi+1,0−θi,0
h̄

q − q−1 Td+i (u)Td−i (u)

= h̄

q − q−1 exp

(

h̄(θi+1,0 − θi,0)

2
+ td+i (u)+ td−i (u)

)
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By definition of td±i ,

td+i (u)+ td−i (u) = −Byi+1(−∂)J ′(u)+ Byi (−∂)J ′(u + h̄)

= −B(yi+1(v)− yi (v + h̄))|v=−∂ J ′(u)

where the second equality follows from J ′(u + h̄) = eh̄∂ J ′(u) and the fact that
epvB( f (u)) = B( f (u + p)). Next, the definition of yi yields

yi+1(v)− yi (v + h̄) = di+1(v)− di (v)

hence

td+i (u)+ td−i (u) = h̄
∑

r≥0

(−1)r+1 di+1,r − di,r

r ! J (r+1)(u)

which implies that

h̄(θi+1,0 − θi,0)

2
+ td+i (u)+ td−i (u) = h̄

∑

r≥0

(−1)r+1 di+1,r − di,r

r ! G(r+1)(u)

and the proof of (B) follows from Proposition 4.2

7.26 Proof of (C0)–(C2)

The condition (C0) follows from the fact that (λ±i (u)− 1)(g±i ′ (v)) = 0 if |i − i ′| > 1.
Since the proof of (C1) is the same as the one given in the verification of (A), we are
left with checking (C2). We need to show that, for any i ∈ I \ {n − 1},

g+i (u)λ
+
i (u)g

+
i+1(v)

eu − ev

u − v = g+i+1(v)λ
±
i+1(v)g

+
i (u)

eu−h̄/2 − ev+h̄/2

u − v − h̄

Using (7.8)–(7.9), the left- and right-hand sides are respectively equal to

u − v
eu − ev

eu−h̄/2 − ev+h̄/2

u − v − h̄

eu − ev

u − v and
eu−h̄/2 − ev+h̄/2

u − v − h̄

7.27 Isomorphism between completions

We give below an analogue of Theorem 6.2 for g = gln . We begin by defining the
appropriate completion of Uh̄(Lgln), which differs from the one used in Sect. 6.3 due
to the fact that gln is not semisimple.
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For each r ≥ 0, t ∈ Z and X = Ei , Fi ,� j , where i ∈ I and j ∈ J, consider the
element

Xr;t =
r
∑

s=0

(−1)s
(

r
s

)

Xs+t

where � j,l = (�+j,l − �−j,l)/(q − q−1). Note that Xr;t = x ⊗ zt (1 − z)r mod h̄
where x ∈ gln is such that X = x mod h̄. Let Kr be the two-sided ideal of Uh̄(Lgln)
generated by the elements {Xr ′;t }r ′≥r,t∈Z, and h̄ if r = 1. Finally, let Jn ⊂ Uh̄(Lgln)
be the ideal

Jm =
∑

m1,...,mk≥1
m1+···+mk=m

Km1 . . .Kmk

Then, Jm is a descending filtration, JmJm′ ⊂ Jm+m′ , and the completion

̂Uh̄(Lgln) = lim←−Uh̄(Lgln)/Jm

is a flat deformation of the completion of U (gln[z, z−1]) at z = 1.

Remark The reason we use Jm instead of the powers of the evaluation ideal J1
as in Sect. 6.3 can be seen at the classical level. Indeed, the correct filtration of
U (gln[z, z−1]) is given by the Jm = U ((z−1)mgln[z, z−1])which contains, but does
not equal J m

1 . For example, if I is the identity matrix, then I⊗(z−1)2 ∈ J2\⋃m≥1 J m
1 .

For each m ∈ N, set

Ŷh̄(gln)≥m =
∏

m′≥m

(Yh̄(gln))m′ ⊂ Ŷh̄(gln)

where (Yh̄(gln))m is the subspace of degree m. The proof of the following result is
similar to that of Theorem 6.2 and therefore omitted.

Theorem The homomorphism � maps Jm to Ŷh̄(gln)m for any m ∈ N and induces
an isomorphism of completed algebras

̂� : ̂Uh̄(Lgln)
∼→ Ŷh̄(gln)

8 Appendix: Proof of the Serre relations

8.1

Let g be a complex, semisimple Lie algebra. The aim of this appendix is to prove the
following
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Proposition Let� be the assignment {Ei,k, Fi,k, Hi,k} → Ŷh̄(g) given in Sects. 3.1–
3.3 and assume that the relations (A) and (B) of Theorem 3.4 hold. Then, � is com-
patible with the q-Serre relations (QL6).

For i 	= j ∈ I, set m = 1− ai j . Define, for any k = (k1, . . . , km) ∈ Z
m and l ∈ Z

Sq
i j (k, l) =

∑

π∈Sm

m
∑

s=0

(−1)s
[

m
s

]

qi

�(Ei,kπ(1) ) · · ·�(Ei,kπ(m−s) )�(E j,l)

�(Ei,kπ(m−s+1) ) · · ·�(Ei,kπ(m) ) ∈ Ŷh̄(g) (8.1)

and let Sq
i j = Sq

i j (0, 0), explicitly given as follows

Sq
i j =

m
∑

s=0

(−1)s
[

m
s

]

qi

(

�(Ei,0)
)m−s

�(E j,0)
(

�(Ei,0)
)s (8.2)

Our aim is to show that Sq
i j (k, l) = 0. Let us outline the main steps of the proof.

(1) We first reduce the proof of Sq
i j (k, l) = 0 to Sq

i j = 0. This is achieved in Lemma
8.5.

(2) By a standard argument using the representation theory of Uh̄sl2, we deduce in
Lemma 8.6 that Sq

i j acts by zero on any finite-dimensional representation of
Yh̄(g).

(3) Finally, we show that these representations separate points in Yh̄(g), and hence
that Sq

i j = 0. Sections 8.8 and 8.9 are devoted to the proof of this fact (Corollary
8.9) which was communicated to us by V. G. Drinfeld.

8.2 The algebra Y

Define an auxiliary algebra Y to be the unital, associative C[h̄]-algebra generated by
{ξ i,r , xi,r }i∈I,r∈N subject to the following relations

(1) For every i, j ∈ I and r, s ∈ N

[ξ i,r , ξ j,s] = 0

(2) For every i, j ∈ I and s ∈ N

[ξ i,0, x j,s] = di ai j x j,s

(3) For every i, j ∈ I and r, s ∈ I

[ξ i,r+1, x j,s] − [ξ i,r , x j,s+1] = di ai j h̄

2
(ξ i,r x j,s + x j,sξ i,r )
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We denote by Y
0 ⊂ Y the commutative subalgebra generated by {ξ i,r }i∈I,r∈N and

by Y
>0

the subalgebra of Y generated by {xi,r }i∈I,r∈N. The latter is a free C[h̄]-algebra

over this set of generators. Moreover, by Corollary 2.5, Y ∼= Y
0 ⊗ Y

>0
.

8.3 The operators σ i,(k) and σ j

The algebra Y has a grading by the root lattice Q given by

deg(ξ i,r ) = 0 and deg(xi,r ) = αi

Fix henceforth i 	= j ∈ I, set m = 1 − ai j and let Y mαi+α j be the homogeneous
component of Y of degree mαi + α j .

Define operators σ j , σ i,(k) on Y mαi+α j as follows. Since Y mαi+α j
∼= Y

0⊗Y
>0
mαi+α j

and Y
>0

is free, we have

Y
>0
mαi+α j

∼= Y
0 ⊗

m
⊕

s=0

Y (i)⊗m−s ⊗ Y ( j)⊗ Y (i)⊗s

where, for a = i, j , Y (a) = Y
>0
αa

is spanned by {xa,r }r∈N. Let σ a denote the C[h̄]-
linear map on Y (a) given by σ a(xa,r ) = xa,r+1. For any k = 1, . . . ,m, define the
Y 0-linear operator σ i,(k) on Y mαi+α j by letting it act on the summand Y (i)⊗m−s ⊗
Y ( j)⊗ Y

⊗s
(i) as

σ i,(k) =
{

1⊗k−1 ⊗ σ i ⊗ 1⊗m+1−k if k ≤ m − s
1⊗k ⊗ σ i ⊗ 1⊗m−k otherwise

Similarly, let σ j ∈ End
Y

0(Y mαi+α j ) be given by 1⊗m−s ⊗ σ j ⊗ 1⊗s on Y (i)⊗m−s ⊗
Y ( j)⊗ Y (i)⊗s .

8.4 The projection pij

Let p : Y → Yh̄(g) be the algebra homomorphism obtained by sending ξa,r �−→ ξa,r

and xa,r �−→ x+a,r for every a ∈ I and r ∈ N, and let pi j be the restriction of p to
Y mαi+α j . The following holds by Proposition 2.8.

Lemma The kernel of pi j is the C[h̄]-linear span of the following elements

(1) For any 0 ≤ s ≤ m − 1 and A(u1, . . . , um, w) ∈ Y
0[u1, . . . , um, w]

A(σ i,(1), . . . , σ i,(m), σ j )
(

(σ i,(m−s) − σ j − ah̄)xm−s
i,0 x j,0xs

i,0

−(σ i,(m−s) − σ j + ah̄)xm−s−1
i,0 x j,0xs+1

i,0

)
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where a = di ai j/2.
(2) For any 0 ≤ s ≤ m, k ∈ {1, . . . ,m − 1}\ {m − s} and A(u1, . . . , um, w) ∈

Y
0[u1, . . . , um, w](k k+1)

A(σ i,(1), . . . , σ i,(m), σ j )(σ i,(k) − σ i,(k+1) − di h̄)x
m−s
i,0 x j,0xs

i,0

(3) For every A(u1, . . . , um, w) ∈ Y
0[u1, . . . , um, w]Sm

A(σ i,(1), . . . , σ i,(m), σ j )

(

m
∑

s=0

(−1)s
(

m
s

)

xm−s
i,0 x j,0xs

i,0

)

Corollary Let X ∈ Ker(pi j ) and A(u1, . . . , um, w) ∈ Y
0[u1, . . . , um, w]Sm . Then,

A(σ i,(1), . . . , σ i,(m), σ j )X ∈ Ker(pi j )

8.5 Reduction step

Let Sq
i j (k, l),Sq

i j denote the elements of Y mαi+α j defined by the same expressions as
(8.1)–(8.2). Then,

Sq
i j (k, l) =

⎛

⎝

∑

π∈Sm

ekπ(1)σ i,(1) . . . ekπ(m)σ i,(m)elσ j

⎞

⎠Sq
i j

Using Corollary 8.4, we obtain the following

Lemma Sq
i j = 0 implies Sq

i j (k, l) = 0 for every k1, . . . , km, l ∈ Z.

8.6

By a finite-dimensional representation of Ŷh̄(g), we shall mean a finitely-generated
topologically free C[[h̄]]-module endowed with a C[[h̄]]-linear action of Ŷh̄(g).

Lemma Let V be a finite-dimensional representation of Ŷh̄(g). Then, Sq
i j acts by zero

on V .

Proof Let Ui be the subalgebra of Ŷh̄(g) generated by

Ei = �(Ei,0) Fi = �(Fi,0) Hi = �(Hi,0)

By Lemma 3.5, {Ei ,Fi ,Hi } satisfy the defining relations of the quantum group Uh̄i sl2,
where h̄i = di h̄/2. We use the following notation of q-adjoint operator (see [19,
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§4.18]) which gives a representation of Ui on any algebra containing it

adq(Ei )(X) = Ei X −Ki XK−1
i Ei

adq(Fi )(X) = Fi XKi − XFiKi

adq(Hi )(X) = [Hi , X ]

where Ki = qHi
i = eh̄i Hi . Let ρ : Ŷh̄(g)→ End(V) be the representation. Then,

adq(ρ(Fi ))ρ(E j ) = 0

adq(ρ(Hi ))ρ(E j ) = ai jρ(E j )

where the first identity follows from Lemma 3.5. Thus, as a Ui -module, End(V) con-
tains the lowest weight vector ρ(E j ) of weight ai j . By the representation theory of
Uh̄i sl2, we get

adq(ρ(Ei ))
mρ(E j ) = ρ

(

adq(Ei )
mE j

) = 0

and the assertion follows from the well-known identity (see [19, Lemma 4.18])

adq(Ei )
mE j =

m
∑

s=0

(−1)s
[

m
s

]

qi

Em−s
i E jE s

i

��

8.7

Let Ih̄ ⊂ Yh̄(g) be the ideal defined by

Ih̄ =
⋂

(V,ρ)
Ker(ρ)

where V runs over all finite-dimensional graded modules over Yh̄(g), that is finitely-
generated torsion-free C[h̄]-modules admitting a C[h̄]-linear action ρ : Yh̄(g) →
End(V) and a Z-grading compatible with that on Yh̄(g).
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Lemma Ih̄ = 0 implies Sq
i j = 0.

Proof The action of Yh̄(g) on any finite-dimensional graded module V extends to one
of Ŷh̄(g) on the completion̂V of V with respect to its grading. By Lemma 8.6, Sq

i j acts

by 0 on ̂V and therefore so do its homogeneous components Sq
i j;n ∈ Yh̄(g), n ≥ 0 on

V . Thus, Sq
i j;n ∈ Ih̄ for any n and Sq

i j = 0. ��

8.8

The following result, and its proof are due to Drinfeld [12]

Proposition The ideal Ih̄ ⊂ Yh̄(g) is trivial.

Proof It suffices to show that I = Ih̄/h̄ Ih̄ is trivial. Indeed, if Ih̄ = h̄ Ih̄ , then Ih̄ =
⋂

k h̄k Ih̄ ⊂⋂

k h̄kYh̄(g) = 0. By definition of Ih̄ , Ih̄ ∩ h̄Yh̄(g) = h̄ Ih̄ so that I embeds
into Yh̄(g)/h̄Yh̄(g) = U (g[s]). Since graded representations are stable under tensor
product, Ih̄ is a Hopf ideal of Yh̄(g), that is

�(Ih̄) ⊂ Yh̄(g)⊗ Ih̄ + Ih̄ ⊗ Yh̄(g)

It follows that I is a co-Poisson Hopf ideal of U (g[s]). By Corollary 8.9 below, any
such ideal is either trivial or equal to U (g[s]). Since Yh̄(g) possesses non-trivial finite-
dimensional graded representations, for example the action on C[h̄] given by the
counit, Ih̄ is a proper ideal of Yh̄(g) and is therefore equal to zero. ��

8.9

Recall that a co-Poisson Hopf algebra A is a Hopf algebra together with a Poisson
cobracket δ : A → A ∧ A satisfying the following compatibility condition (see [5,
§6.2] for details):

δ(xy) = δ(x)�(y)+�(x)δ(y)

For a Lie algebraa, there is a one-to-one correspondence between co-Poisson structures
on Ua and Lie bialgebra structures on a [5, Proposition 6.2.3]. Moreover, there is a
one-to-one correspondence between co-Poisson Hopf ideals of Ua and Lie bialgebra
ideals of a.

The Lie bialgebra structure on g[s] is given by

δ : g[s] → g[s] ⊗ g[s] ∼= (g⊗ g)[s, t]
δ( f )(s, t) = (ad( f (s))⊗ 1+ 1⊗ ad( f (t)))

(

�

s − t

)

(8.3)

where � ∈ g⊗ g is the Casimir tensor. Note that δ lowers the degree by 1.
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Let a ⊂ g[s] be the Lie bialgebra ideal corresponding to co-Poisson Hopf ideal
I ⊂ U (g[s]). By the discussion given in previous paragraph,

δ(a) ⊂ a⊗ g[s] + g[s] ⊗ a (8.4)

Lemma Let a ⊂ g[s] be an ideal. Then a is of the form a = g ⊗ gC[s] for some
polynomial g ∈ C[s].
Proof Let S ⊂ C[s] be the set of all polynomials f such that there exists some non-
zero x ∈ g for which x ⊗ f ∈ a. We claim that S is an ideal of C[s]. Let f ∈ S
and g ∈ C[s]. Let 0 	= x ∈ g be such that x ⊗ f ∈ a, and choose y ∈ g such that
[x, y] 	= 0. Then

[x, y] ⊗ f g = [x ⊗ f, y ⊗ g] ∈ a

and hence f g ∈ S.
Now for any f ∈ S, the set {x ∈ g : x ⊗ f ∈ a} is an ideal in g, which is non-zero

and hence equal to g. This proves that a = g ⊗ S. Since C[s] is a principal ideal
domain, the lemma is proved. ��
Corollary Let a ⊂ g[s] be a Lie bialgebra ideal. Then either a = 0 or a = g[s].
Proof Let g ∈ C[s] be such that a = g ⊗ (g) ⊂ g[s]. By (8.3), we know that the
Lie cobracket δ lowers the degree by 1. Using (8.4), we conclude that g is a constant
polynomial. ��
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